
Global Modeling Initiative:
Tutorial and User’s Guide II

Jules Kouatchou, Megan Damon and Gary Wojcik
Software Integration and Visualization Office

NASA Goddard Space Flight Center
Greenbelt, MD 20771

March 13, 2008

Abstract

In this report, we provide a description of the GMI code. It is intended to help users in the
GMI community to obtain, install, compile, run, and modify the code. We present the code
organization and data structures, procedures on how to run the code under various config-
urations, to manipulate the code, and the code parallel performance. Examples introduced
here were carried out on Intel clusters.

This version of the User’s Guide differs from the previous one (released in 2004) in many
areas due to the fact that the GMI code went through a lot of changes. For instance:

• A completely new code directory structure

• Componentization of the code

• New namelist settings

• New diagnostics capabilities.

• Removal of the LLNL ESM package

• Introduction of ESMF.

As a result of these changes, we have new installation and compilation procedures, an
object-oriented approach to manipulate components of the code, a more flexible way to
produce netCDF output file, a more readable code, the ability to automatically generate
code documentation, etc.

ii

Contents

1 Introduction 1

2 Structure of the Code 3

2.1 Components of GMI . 3

2.2 Directory Structure of The Code . 4

2.3 Coding Principles . 8

2.4 General Flowchart of the Code . 8

3 Installation and Testing 11

3.1 Getting the Code . 12

3.2 Model Files and Directory Structure . 12

3.3 Setting Environment Variables . 12

3.4 Code Compilation and Basic Test Run . 14

3.4.1 Compiling the model . 14

3.4.2 Testing the Executable . 14

3.5 Summary of the Necessary Steps . 16

4 GMI Files 17

4.1 Input Namelist Files . 17

4.2 Input Datasets . 18

4.3 Output Files . 21

4.3.1 ASCII Diagnostic Output File . 21

4.3.2 netCDF Output Files . 22

4.4 Location of Input, Output, and Other GMI Files 23

4.4.1 Directories under input/ . 23

4.4.2 Directories under output/ . 24

5 Performing Specific Runs 25

5.1 The GMI Self Contained Test . 25

5.2 Standard Runs . 25

5.3 Other Namelist Variables . 26

5.4 Restart Capabilities . 26

iii

CONTENTS

6 Making Changes 29
6.1 Coding Consideration . 29
6.2 Making Changes in the Code . 29

6.2.1 Adding a Variable to a Derived Type 31
6.2.2 Adding Chemical Mechanisms . 32
6.2.3 netCDF Output Files . 33

7 Script Tools 34
7.1 Internal Scripts . 34
7.2 Production Tools . 36

8 How to Use CVS 39
8.1 What is CVS? . 39
8.2 How to Use CVS . 40
8.3 Use CVS to Keep Up-to-Date with GMI Source Code Changes 40
8.4 Use CVS to Track Both New Releases and Your Changes 43
8.5 Where To Obtain CVS . 44

9 Parallel Performance 45

A Include Files 49

B Single/Multiple Processor Runs 51

C NetCDF Files 53

D Important Features 58
D.1 From Species Indices to Species Names . 58
D.2 Station Diagnostics . 61
D.3 Frequency Diagnostics . 63
D.4 Overpass Diagnostics . 64
D.5 Choice of Vertical Levels . 65

E List of Species 66

F Input Namelist Variables 70

iv GMI User’s Guide

List of Tables

2.1 Basic information on the chemical mechanisms. 4
2.2 GMI code directories . 7

4.1 List of namelist variables refering to input file names. The chemical mecha-
nisms are labeled as follow: aerosol (A), gocart aerosol (GA), micro aerosol
(MA), troposphere (T), and strat trop (C). 20

4.2 Available metFields files. 21

C.1 GMI netCDF files. Here # is 1, 2, 3, or 4. 53
C.2 Content of each GMI netCDF output file. 56
C.3 Frequency of GMI netCDF output files. 56

D.1 New namelist variables (and corresponding old ones) used to set species
names instead of species indices in the namelist file. 59

D.2 New namelist variables for station diagnostics. 61

F.1 Namelist variables . 88

v

List of Figures

2.1 Flowchart of the main program . 9
2.2 Flowchart of the time stepping routine. 10

vi

Chapter 1

Introduction

The Global Modeling Initiative (GMI) 1 was initiated under the auspices of the Atmospheric
Effects of Aircraft Program (AEAP) in 1995. The goal of GMI is to develop and maintain a
state-of-the-art modular 3-D chemistry transport model (CTM) that can be used to assess
the impact of various natural and anthropogenic perturbations on atmospheric composition
and chemistry, including, but not exclusively, the effect of aircraft.

The Atmospheric Chemistry Modeling and Analysis Program (ACMAP) has selected
the approach of GMI to serve both as an assessment facility and a testbed for model
improvements for future assessment in all areas of atmospheric chemistry. The goals in the
design of GMI as an assessment tool are [4]

1. The model should be well-characterized and thoroughly tested against observations.

2. The model should be able to test and compare a diversity of approaches to specific
processes by being able to easily swap modules containing different formulations of
chemical processes, within a common framework.

3. The model should be optimized for computational efficiency and be able to run on
different platforms.

4. Model results should be examined by a large representation of the scientific commu-
nity, thus faciliting consensus on the significance of assessment results.

5. Ultimately, the model integration could provide a unique assessment capability for
other anthropogenic impacts of concern by providing a testbed for other algorithms
and intercomparisons used in assessment of those issues.

Many elements of the GMI model address these goals. The GMI model is a modular
chemistry-transport model (CTM) with the ability to carry out multi-year assessment sim-
ulations as well as incorporate different modules, such as meteorological fields, chemical
mechanisms, numerical methods, and other modules representing the different approaches
of current models. This capability facilitates the understanding of the differences and un-
certainties of model results.

1http://gmi.gsfc.nasa.gov/gmi.html

1

Chapter 1. Introduction

The testing of GMI results against observations is a high priority of GMI activities. Sci-
ence Team members contribute by either supplying a particular module and/or contributing
to the analysis of the results and comparison with atmospheric observations [3, 6, 7, 5].
Application of the model to the potential impacts of stratospheric aircraft emissions is pre-
sented in [4]. The model has been employed to investigate the effects of stratospheric aircraft
emissions on polar stratospheric clouds [2] and simulate ozone recovery over a 36-year time
period [1].

Besides acting as a testbed for different modules, GMI will also act as a 3-D assessment
facility. The GMI modular code is currently implemented at NASA/Goddard Space Flight
Center (the core institution). The core institution is responsible for:

• Integrating and testing components of the GMI model,

• Making the code readable, flexible and easy to maintain

• Maintaining coding standards which will make the model portable to different plat-
forms

• Carrying out assessment calculations, and

• Providing first-order results and diagnostics for analysis by team members.

The current version of the code has been developed to run on a variety of computing
platforms, both with single and multiple processors (Linux clusters, SGI Origin series, HP
Compaq SC45, single processor workstations, etc.).

This report is intended to familiarize users with the GMI code. Users will be able to

• Have information on the code structure (Chapter 2).

• Obtain instructions on how to obtain the code, install it, compile it, run it on any
platform (Chapter 3).

• Have knowledge of all the input and output files involved in the code (Chapter 4,
Appendix C and Appendix F).

• Carry out specific and restart runs (Chapter 5).

• Learn how to make changes in the code (Chapter 6).

• Execute useful script tools needed, for instance, to search for words, to produce restart
input namelist files, etc. (Chapter 7).

• Learn basic CVS commands (Chapter 8).

• Analyze the parallel performance of the code (Chapter 9).

• Be familiar with include files used to select the desired architecture, to set up compi-
lation options, etc. (Appendix A).

• Know how to carry out a single or multiple processor run (Appendix B).

• Use namelist features (Appendix D).

• Know the species used in the code (Appendix E).

2 GMI User’s Guide

Chapter 2

Structure of the Code

2.1 Components of GMI

The modules that make up the GMI assessment model are [6]:

1. Input meteorological data coming from four major Global Circulation Models (from
NCAR, GISS, DAO, and GMAO). Data from all these input sets include horizontal
U and V winds, temperature, and surface pressure.

2. Advection algorithm to transport trace species

3. Mass tendencies

4. Numerical schemes for chemistry solutions

5. Chemistry mechanism

6. Heterogeneous processes

7. Photolysis

8. Diagnostics

9. Tropospheric treatment

10. Initial conditions

11. Boundary conditions

All the above modules have multiple packages/versions that can be selected through proper
namelist settings. The GMI model incorporates six chemical mechanisms:

• aerosol (University of Michigan formulation)

• micro aerosol (University of Michigan formulation)

• gocart aerosol (GOCART formulation)

• stratosphere

3

Chapter 2. Structure of the Code

• troposphere

• combined stratostophere/troposphere (strat trop or combo)

A summary of the mechanisms appears in Table 2.1.

Mechanism name # species # thermal reactions # photolytic reactions

aerosol 30 8 1
micro aerosol 40 8 1
gocart aerosol 31 8 1
stratosphere 57 122 44
troposphere 85 222 49
strat trop 124 320 81

Table 2.1: Basic information on the chemical mechanisms.

2.2 Directory Structure of The Code

The top directory of the GMI code is gmi gsfc/ which contains the sub-directories

• Components/: Routines for each component

• Shared/: Include files and routines shared by all the components

• Documents/: General information about the code and how it is to be used

• Applications/: Routines for driving the code

• Config/: Main makefile files

In Table 2.2, we give more details on the structure of each of the above directories.

4 GMI User’s Guide

2
.2

.
D

ire
c
to

ry
S
tru

c
tu

re
o
f

T
h
e

C
o
d
e

Directory Name Synopsis

gmi gsfc GMI reference directory
gmi gsfc/Documents Directory for documents
gmi gsfc/Documents/Papers
gmi gsfc/Documents/Tutorials
gmi gsfc/Documents/Tutorials/UserGuide This document
gmi gsfc/Documents/Tutorials/removingESM
gmi gsfc/Documents/Tutorials/MEGANemissions
gmi gsfc/Documents/ReadmeFiles
gmi gsfc/Config Main makefile files
gmi gsfc/Shared Files and modules shared by all the components
gmi gsfc/Shared/GmiCommunications Communication routines
gmi gsfc/Shared/GmiIOutilities Supporting routines for I/O
gmi gsfc/Shared/GmiESMF Interfaces to ESMF
gmi gsfc/Shared/GmiInclude Include files
gmi gsfc/Shared/GmiMetFields Routines for deriving MetFields variables
gmi gsfc/Shared/GmiScripts Script tools
gmi gsfc/Shared/GmiSupportingModules Supporting routines for various calculations.
gmi gsfc/Shared/NcUtils Double netCDF utility routines for double precision
gmi gsfc/Shared/NcUtils Single netCDF utility routines for single precision
gmi gsfc/Components/GmiAdvection Advection component
gmi gsfc/Components/GmiAdvection/advectionMethod Routines driving Advection
gmi gsfc/Components/GmiAdvection/dao2advec DAO advection routines
gmi gsfc/Components/GmiAdvection/dao2utils Advection utility routine computing,

courant numbers, Divergence, etc.
gmi gsfc/Components/GmiAdvection/include Advection include file
gmi gsfc/Components/GmiChemistry Chemistry component
gmi gsfc/Components/GmiChemistry/chemistryMethod Routines driving Chemistry
gmi gsfc/Components/GmiChemistry/AerosolDust Module for Aerosol/Dust calculations
gmi gsfc/Components/GmiChemistry/ioChemistry I/O routines for Chemistry
gmi gsfc/Components/GmiChemistry/include Chemistry include file
gmi gsfc/Components/GmiChemistry/sad Aerosol surface area density and condensed

phase mixing ratio modules

G
M

I
U

se
r’s

G
u
id

e
5

C
h
a
p
te

r
2
.

S
tru

c
tu

re
o
f

th
e

C
o
d
e

gmi gsfc/Components/GmiChemistry/solvers Chemistry solvers
gmi gsfc/Components/GmiChemistry/solvers/micro sulfur
gmi gsfc/Components/GmiChemistry/solvers/smv2chem
gmi gsfc/Components/GmiChemistry/solvers/sulfur
gmi gsfc/Components/GmiChemistry/mechanisms Chemical mechanisms
gmi gsfc/Components/GmiChemistry/mechanisms/aerosol Aerosol chemistry
gmi gsfc/Components/GmiChemistry/mechanisms/aerosol/include setkin Include files for aerosol
gmi gsfc/Components/GmiChemistry/mechanisms/aerosol/setkin Routines for rate constants and kinetic rates
gmi gsfc/Components/GmiChemistry/mechanisms/micro aerosol micro aerosol chemistry
gmi gsfc/Components/GmiChemistry/mechanisms/micro aerosol/include setkin Include files for micro aerosol
gmi gsfc/Components/GmiChemistry/mechanisms/micro aerosol/setkin Routines for rate constants and kinetic rates
gmi gsfc/Components/GmiChemistry/mechanisms/gocart aerosol gocart aerosol chemistry
gmi gsfc/Components/GmiChemistry/mechanisms/gocart aerosol/include setkin Include files for gocart aerosol
gmi gsfc/Components/GmiChemistry/mechanisms/gocart aerosol/setkin Routines for rate constants and kinetic rates
gmi gsfc/Components/GmiChemistry/mechanisms/strat trop Strat/Trop chemistry
gmi gsfc/Components/GmiChemistry/mechanisms/strat trop/include setkin Include files for the combined strat/trop
gmi gsfc/Components/GmiChemistry/mechanisms/strat trop/setkin Routines for rate constants and kinetic rates
gmi gsfc/Components/GmiChemistry/mechanisms/stratosphere Stratospheric chemistry
gmi gsfc/Components/GmiChemistry/mechanisms/stratosphere/include setkin Include files for stratosphere
gmi gsfc/Components/GmiChemistry/mechanisms/stratosphere/setkin Routines for rate constants and kinetic rates
gmi gsfc/Components/GmiChemistry/sulfur Routines for sulfur chemistry
gmi gsfc/Components/GmiChemistry/mechanisms/troposphere Tropospheric chemistry
gmi gsfc/Components/GmiChemistry/mechanisms/troposphere/include setkin Include files for troposphere
gmi gsfc/Components/GmiChemistry/mechanisms/troposphere/setkin Routines for rate constants and kinetic rates
gmi gsfc/Components/GmiChemistry/photolysis Photolysis component
gmi gsfc/Components/GmiChemistry/photolysis/include
gmi gsfc/Components/GmiChemistry/photolysis/fastj
gmi gsfc/Components/GmiChemistry/photolysis/fast JX
gmi gsfc/Components/GmiChemistry/photolysis/fast JX53b
gmi gsfc/Components/GmiChemistry/photolysis/fast JX53c ref
gmi gsfc/Components/GmiChemistry/photolysis/lookup Routines for lookup table
gmi gsfc/Components/GmiChemistry/photolysis/utils
gmi gsfc/Components/GmiConvection Convection component
gmi gsfc/Components/GmiConvection/convectionMethod Routines driving Convection

6
G

M
I

U
se

r’s
G

u
id

e

2
.2

.
D

ire
c
to

ry
S
tru

c
tu

re
o
f

T
h
e

C
o
d
e

gmi gsfc/Components/GmiDeposition Deposition component
gmi gsfc/Components/GmiDeposition/depositionMethod Routines driving Deposition
gmi gsfc/Components/GmiDeposition/include
gmi gsfc/Components/GmiDiffusion Diffusion component
gmi gsfc/Components/GmiDiffusion/diffusionMethod Routines driving Diffusion
gmi gsfc/Components/GmiEmission Emission component
gmi gsfc/Components/GmiEmission/emissionMethod Routines driving Emission
gmi gsfc/Components/GmiEmission/Harvard Harvard emission routines
gmi gsfc/Components/GmiEmission/MEGAN MEGAN emission routines
gmi gsfc/Components/GmiEmission/ioEmission I/O routines for Emission
gmi gsfc/Components/GmiEmission/include
gmi gsfc/Components/GmiEmission/lightning Routines for lightning parameterization
gmi gsfc/Components/GmiEmission/llnl LLNL emission routines
gmi gsfc/Components/GmiSpeciesConcentration Species Concentration component
gmi gsfc/Components/GmiSpeciesConcentration/spcConcentrationMethod Routines driving Species Concentration
gmi gsfc/Components/GmiSpeciesConcentration/ioSpcConcentration I/O routines for Species Concentration
gmi gsfc/Applications Control and time stepping routines
gmi gsfc/Applications/GmiApp
gmi gsfc/Applications/GmiBin

Table 2.2: GMI code directories

G
M

I
U

se
r’s

G
u
id

e
7

Chapter 2. Structure of the Code

2.3 Coding Principles

A ”.F90” (Fortran code) suffix denotes source code files. The ”F90” suffix indicates that the
Fortran source contains preprocessing directives. Files named with a ”.h” suffix are header
files that contain preprocessing directives, variable declarations, parameter definitions, and
common block definitions. Contents of selected header files are included via #include
statements at the beginning portion of each of the ”.F90” and ”.c” files.

To enable multiyear chemistry simulations, the GMI core model was parallelized to
make use of the most powerful computational platforms available. The parallel strategy
uses a two-dimensional longitude/latitude domain decomposition whereby each subdomain
consists of a number of contiguous columns having a full vertical extent. Processors are
assigned to subdomains, and variables local to a given subdomain are stored on the memory
of the assigned processor. Data are transmitted between computational processes, when
needed, in the form of messages. The number of meshpoints per subdomain may not be
uniform, under the constraint that the decomposition be logically rectangular. The choice
to decompose in only two dimensions is based on the fact that chemistry, photolysis, and
cold sulfate algorithms make up the vast majority of the computational requirements and
are all either local or column calculations. These computations require no communication
with neighboring grid zones and hence maximize the parallel efficiency [6].

2.4 General Flowchart of the Code

In this section, we provide flowcharts of the main program and the time stepping routine.
The main program is gmiMain (filename gmiMain.F90). This calls routines to initialize
the ESMF programming environment (that launches the Message Passing Interface MPI),
perform domain decomposition, initialize the GMI components (Chemistry, Emission, De-
position, Advection, Convection, and Diffusion), perfom model integration (run the com-
ponents), and finalize the components and ESMF (see Figure 2.1). The most important
calculations done in the time stepping routine appear in Figure 2.2. The figure only shows
the main modules of the code. We observe that the major components are executed here.

8 GMI User’s Guide

2.4. General Flowchart of the Code

Initialize ESMF

Read namelistFile
Perform Domain Decomposition

Initialize GMI Components

Run GMI Components
Perform IO

Finalize GMI Components

Finalize ESMF

Figure 2.1: Flowchart of the main program

GMI User’s Guide 9

Chapter 2. Structure of the Code

Initialization Phase

Update metFields
related quantities

Run Emission

Update metFields
related quantities

Advance in Time

Gravitational Settling
Calculations

Run Convection

Synthetic Species
Calculations

Run Diffusion

Run Advection

Run Deposition

Run Chemistry

Figure 2.2: Flowchart of the time stepping routine.

10 GMI User’s Guide

Chapter 3

Installation and Testing

This chapter is written to help new users install and test the GMI code. We provide specific
instructions on how to obtain the code, to properly set environment variables, to select the
model configuration, to choose a particular platform, to compile the code and to perform
basic test runs. The focus of these instruction is on the installation and execution of the
GMI code on discover and explore. The same procedures can easily be applied to any
platform.

To get and install the GMI code, the following system software is needed:

• CVS (see Chapter 8 for instruction)

• F90/95 (ideally ifort for intel)

• C (ideally icc for intel). Down the road, it will not be required.

• MPI

• netCDF (version 3.4 or higher). The location of netCDF should be provided in the files
Config/gem config.h and Config/compiler.mk before compiling the code (see Section
3.3 for details).

• ESMF (see http://www.esmf.ucar.edu)

• make and gmake

• makedepend (generally in /usr/bin/X11)

• perl

• a debugger (if possible)

During this process of installing and testing the code, it is assumed that Cshell is the
default shell employed by the user. In fact, the GMI environment variables required for
these procedures are set up using Cshell.

11

Chapter 3. Installation and Testing

3.1 Getting the Code

To obtain the GMI code,

• Select the directory where you want to install the GMI model, say MYGMI/

• Get the latest version of the model from the cvs repository at sourcemotel by typing
the command lines:

%setenv CVS_RSH ssh

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co -P gmi_gsfc

Here usrid is your login name on sourcemotel. You will be asked to provide your password
on sourcemotel. The directory gmi gsfc/, which is the main GMI directory, is then created.

3.2 Model Files and Directory Structure

Move into gmi gsfc/, the top directory of the GMI code:

%cd gmi_gsfc

%ls

You will find (in gmi gsfc/) the files and directories:

Applications/ Config/ README.first Shared/ login.gmi

CVS/ Documents/ README.install cshrc.gmi

Components/ Makefile README.notice gem/

3.3 Setting Environment Variables

In the directory gmi gsfc/, read all the README files by starting with README.first file
that guides a new user to take the required steps for installing and running the GMI code.
The top portions of the files cshrc.gmi and login.gmi (also located in Shared/GmiScripts/)
include instructions for setting up the environment variables which are discussed in this
section.

Edit the file cshrc.gmi

• Select the chemistry mechanism you want to consider by setting the variable CHEM-
CASE. Currently six mechanisms are available: troposphere, aerosol, micro aerosol,
gocart aerosol, stratosphere, and strat trop (for the combined stratosphere/troposphere
or combo mechanism). If you want to use the troposphere mechanism for instance,
uncomment the corresponding line to have

setenv CHEMCASE trop

12 GMI User’s Guide

3.3. Setting Environment Variables

• For the platform you want the GMI model to run on, update the variables GMIHOME
(location of the main model directory) and GMI DATA (directory where the input
data to test the installation are located - not really necessary):

setenv GEMHOME ~/MYGMI/gmi_gsfc

setenv GMI_DATA ~/MYGMI/gmi_gsfc

Copy the files cshrc.gmi and login.gmi from this directory to your home directory

%cp cshrc.gmi ~/.cshrc.gmi

%cp login.gmi ~/.login.gmi

Go to the directory Config/ and edit the file gem sys options.h. Modify the line

#define ARCH_OPTION ARCH_XXXX

to select the architecture on which you want to run the code. For instance, XXXX is INTEL
for discover or explore. In this case, you also need to set

#define HOST_MACH YYYYY

where YYYYY is either DISCOVER or PALM (for explore).
In addition, set the variable MSG OPTION to determine if you want a single processor
version of the code

#define MSG_OPTION MSG_NONE

or a multiple processor version (using MPI) of the code

#define MSG_OPTION MSG_MPI

You may also choose to edit the file gem options.h to select debugging, optimization, or
profiling options. Provide the paths to MPI and netCDF include files and libraries in the
files gem config.h and libraries.mk. Some compilation options may have to be changed in
the files gem config.h and compiler.mk. Go to your home directory and edit the file .cshrc

%cd ~/

%vi .cshrc

Include the lines

setenv CVS_RSH ssh

setenv ARCHITECTURE ARCH_XXXX

if (-e ~/.cshrc.gmi) then

source ~/.cshrc.gmi

endif

You must also edit the .login file and add the lines

if (-e ~/.login.gmi) then

source ~/.login.gmi

endif

GMI User’s Guide 13

Chapter 3. Installation and Testing

Update the changes made in the files .cshrc and .login by typing:

%source .cshrc

%source .login

The setting of the environment variables ended with the previous two commands. The
setting automatically creates aliases that allow the user to easily access the code directories
and to execute scripts (see Chapter 7). For instance, by typing:

• cd gmi or cd $GMIHOME, you will get to the code main directory.

• cd phot, you will move to the directory containing the Photolysis component package
(gmi gsfc/Components/GmiChemistry/photolysis/).

• cd emiss, you will move to the directory containing the Emission component package
(gmi gsfc/Components/GmiEmission/).

• seabf my words, you will search through all the GMI ”.F90” files for the string
my words.

3.4 Code Compilation and Basic Test Run

Go back to the working directory MYGMI/gmi gsfc/:

%cd gmi

3.4.1 Compiling the model

To compile the code, use the commands:

%gmake all

The gmake command compiles and links the code. ”.f90”, ”.o”, ”.mod” and ”.a” files are
created and the executable named gmi.x is placed in the directory Applications/GmiBin/.

3.4.2 Testing the Executable

To test the executable, we will use a sample namelist file that comes with the code. For each
platform, we show examples of job script files (named gmitest.job) to test the executable.
On explore and discover you need to have your sponsor code account (type the command
getsponsor to obtain it).

It is assumed that the user wants to test the model from the directory /explore/nobackup/usrid
on explore and /discover/nobackup/usrid on discover.

runGmi_ExploreTest

#PBS -S /bin/csh

#PBS -N gmiCombo

-N sets job’s name

#PBS -l ncpus=64

14 GMI User’s Guide

3.4. Code Compilation and Basic Test Run

#PBS -l walltime=00:35:00

#PBS -A a930b

-A sets the sponsor code account

#PBS -V

#PBS -e gmiCombo.err

#PBS -o gmiCombo.out

#

setenv workDir /explore/nobackup/usrid

setenv CHEMCASE strat_trop

setenv GmiBinDir ~/MYGMI/gmi_gsfc/Applications/GmiBin

cd $workDir

#

mpirun -np 64 $GmiBinDir/gmi.x -d comboNamelistFile.in

runGmi_DiscoverTest

#PBS -S /bin/csh

#PBS -N gmiCombo

-N sets job’s name

#PBS -l select=16:ncpus=4

choose 16 nodes and 4 processors per node

#PBS -l walltime=00:35:00

#PBS -W a930b

-W sets the sponsor code account

#PBS -V

#PBS -e gmiCombo.err

#PBS -o gmiCombo.out

#

setenv workDir /discover/nobackup/usrid

setenv CHEMCASE strat_trop

setenv GmiBinDir ~/MYGMI/gmi_gsfc/Applications/GmiBin

cd $workDir

#

limit stacksize unlimited

mpirun -np 64 $GmiBinDir/gmi.x -d comboNamelistFile.in

Remark 1 Replace a930b in the above script files with your sponsor code account. Here
usrid is the user’s login name.

To submit the job script, do the following

On explore and discover

%qsub runGmi_ExploreTest

%qsub runGmi_DiscoverTest

GMI User’s Guide 15

Chapter 3. Installation and Testing

3.5 Summary of the Necessary Steps

In this section, we summarize the steps needed to obtain, install, and run the GMI code on
any platform.

1. Obtain the code (gmi gsfc release) from the cvs repository.

2. Move to the GMI working directory (gmi gsfc/).

3. Edit the file cshrc.gmi to update the variables GMIHOME, GMI DATA (not necessary) and
CHEMCASE.

4. Copy the files cshrc.gmi and login.gmi to .cshrc.gmi and .login.gmi in your home
directory.

5. Go to the directory Config/ to edit the files gem sys options.h, gem config.h, com-
piler.mk, and libraries.mk to select the architecture and to update the compilation
options and paths.

6. Go to your home directory to edit and source the files .cshrc and .login.

7. Type cd gmi and compile the code by typing gmake all.

8. Write a job script file and submit the job to run the executable.

16 GMI User’s Guide

Chapter 4

GMI Input/Output Files

4.1 Input Namelist Files

Input namelist files are generally named <problem name>.in. They allow many variables
to be changed without having to recompile or relink the code. Each namelist file is broken
into these sections:

1. nlGmiControl

2. nlGmiMetFields

3. nlGmiSpeciesConcentration

4. nlGmiTracer

5. nlGmiDiagnostics

6. nlGmiRestart

7. nlGmiAdvection

8. nlGmiConvection

9. nlGmiDiffusion

10. nlGmiDeposition

11. nlGmiEmission

12. nlGmiLightning

13. nlGmiChemistry

14. nlGmiPhotolysis

Here are some basic requirements for editing namelist files:

• All namelist sections must be present and in proper order, even if no variable are
listed in them.

17

Chapter 4. GMI Files

• Variable names must be exact and placed in the proper section.

• Real numbers need a “d” exponent, even if it is “d0”.

• Put a comma after each variable entry except the last one in each section.

• End each section with a “/”.

• File names must be enclosed in quotes.

• Some variable settings are incompatible with each other. The code does some checking
operations to catch these at run time.

Remark 2 All REAL*8 namelist variables need to be input with a ”D” exponent (even if
it is D0).

Appendix F gives a list of all the namelist variables, their types, and their description.

4.2 Input Datasets

In Table 4.1, we list all the namelist variables for necessary input data and the file in which
they are contained. We also briefly describe each file, state whether it is grid dependent,
and indicate which chemical mechanism requires it, if any.

18 GMI User’s Guide

4
.2

.
In

p
u
t

D
a
ta

se
ts

Variable Name Type Description Grid Dep. Mechanism

nlGmiSpeciesConcentration:
const infile name nc Initial species concentration yes all
fixed const infile name nc fixed species concentration yes all
nlGmiDiagnostics:
stationsInputFileName ascii List of stations all
nlGmiRestart:
restart infile name nc restart file yes all
nlGmiEmission:
emiss infile name nc emission data yes all
fertscal infile name ascii fertilizer scale data yes all
lai infile name ascii leaf area index data yes all
light infile name ascii light data no all
precip infile name ascii precipitation data yes all
soil infile name ascii soil type data no all
veg infile name ascii vegetation data yes all
isopconv infile name ascii isoprene conversion data no all
monotconv infile name ascii monoterpene conversion data no all
laiMEGAN InfileName nc AVHRR leaf area index data yes all
aefMboMEGAN InfileName nc methyl butenol annual emiss factors yes all
aefIsopMEGAN InfileName nc isoprene annual emiss factors yes all
aefOvocMEGAN InfileName nc other VOC annual emiss factors yes all
aefMonotMEGAN InfileName nc monoterpene annual emiss factors yes all
scFactorNOff infile name nc Scaling factor for NO fossil fuel emission yes T/C
scFactorNObb infile name nc Scaling factor for biomass burning emission yes T/C
emiss aero infile name nc aerosol emissions yes A/MA/GA
emiss dust infile name nc dust emissions yes A/MA/GA
GOCARTerod infile name nc yes GA
GOCARTocean infile name nc yes GA
GOCARTerod mod infile name nc yes GA
nlGmiChemistry:
AerDust infile name nc aerosol/dust concentrations yes T/C
forc bc infile name ascii forcing boundary conditions no

G
M

I
U

se
r’s

G
u
id

e
1
9

C
h
a
p
te

r
4
.

G
M

I
F

ile
s

loss data infile name ascii loss frequency data no
h2oclim infile name nc Water climatology data yes
lbssad infile name nc Liquid binary sulfate yes
rxnr adjust infile name nc Reaction rate adjustment data yes
nlGmiPhotolysis:
cross section file ascii X-Section quantum yield no
T O3 climatology file ascii T & O3 climatology no
scattering data file ascii Aerosol/cloud scattering data no
rate file ascii master rate data no
qj infile name nc photolysis rates yes GA
sfalbedo infile name ascii surface albedo data yes
uvalbedo infile name ascii uv-albedo data yes

Table 4.1: List of namelist variables refering to input file names.
The chemical mechanisms are labeled as follow: aerosol (A),
gocart aerosol (GA), micro aerosol (MA), troposphere (T), and
strat trop (C).

2
0

G
M

I
U

se
r’s

G
u
id

e

4.3. Output Files

In addition to the files mentioned in Table 4.1, GMI needs meteorological (metFields)
input files. The code uses metFields from various sources. The available metFields files are
listed in Table 4.2.

Source Description Year Resolution

DAO GEOS-1 Strat 1997, 1998 4× 5× 46

GISS GISS prime 1977 4× 5× 23

fvGCM GMAO GEOS4 AGCM 1994, 1998 4× 5× 42
1994, 1995, 1996, 1997, 1998 2× 2.5 × 42

GEOS4DAS GMAO GEOS4 DAS 2001, 2004, 2005, 2006, 2007 4× 5× 42
2000, 2001, 2004, 2005, 2006, 2007 2× 2.5 × 42

GEOS4FASM GMAO GEOS4 Fcst 2001 2× 2.5 × 42

GEOS4FCST GMAO GEOS4 first look Fcst 2004, 2005 2× 2.5 × 42

Table 4.2: Available metFields files.

The namelist setting of the metFields files is done through the variable

met_infile_names(), or

met_filnam_list

4.3 Output Files

ASCII output and binary output files in netCDF data format are produced from GMI runs.
The contents and the number of different output files can be controlled by using appropriate
namelist parameters. To obtain information on how these parameters are set, please refer
to Appendix F.

4.3.1 ASCII Diagnostic Output File

The following rules apply to the ASCII diagnostic output file:

• Is named <problem name>.asc.

• Contains up to five sections, each of which can be turned on or off through namelist
settings.

• For the first three sections, only information on a single specified species is output.

• Can specify a particular longitude index to use in the second section.

• Can specify the output frequency (in number of time steps).

GMI User’s Guide 21

Chapter 4. GMI Files

4.3.2 netCDF Output Files

The netCDF output files that can be produced by the GMI model are:

1. <problem name>.const.nc

• species concentration

• [+mass]

• [+ pressure and/or temperature]

• [+dry depos. and/or wet depos.]

2. <problem name>.freq#.nc (# is 1, 2, 3, 4)

3. <problem name>.overpass#.nc (# is 1, 2, 3, 4)

4. <problem name>.aerdust.nc

5. <problem name>.tend.nc

6. <problem name>.col.nc

7. <problem name>.cloud.nc

8. <problem name>.flux.nc

9. <problem name>.qj.nc

10. <problem name>.qk.nc

11. <problem name>.qqi.nc

12. <problem name>.qqk.nc

13. <problem name>.sad.nc

The user can

• Output or not any of the above netCDF files

• Specify snapshots or mean values for most of them.

• Specify frequency of output (by number of days, monthly, and/or the 1st and 15th of
each month).

In addition to these files, the code can also produce a netCDF restart file named<problem name>.rst.nc.
The file contains everything needed to do a continuation run and can be written out with the
frequency (namelist variable pr rst period days): number of days, monthly, and/or the 1st
and 15th of each month. There is a namelist variable (do overwrt rst) specifying whether
to over-write or append to the file.

In Appendix C, we provide tables listing the contents of the netCDF output files and
the frequency that variables in them can be written out.

22 GMI User’s Guide

4.4. Location of Input, Output, and Other GMI Files

4.4 Location of Input, Output, and Other GMI Files

The input and output data files are organized by directory on both dirac and discover.
The main GMI directory on dirac is /archive/anon/pub/gmidata2/ and on discover
is /discover/nobackup/projects/gmi/gmidata2. The directory structure below this
level is identical on both machines.

There are 5 major subdirectories underneath gmidata2

• input (Input files for the GMI model)

• output (GMI model output files)

• docs (Documentation for the GMI model)

• progs (GMI scripts and programs)

• users (Files and directories generated and used by GMI users)

4.4.1 Directories under input/

The input files are organized into one of the following 5 subdirectories under input/

• metfields

• chemistry

• emissions

• species

• run info

The metfields are then further organized by the model from which they were generated
(e.g., dao, geos4das, fvgcm), the resolution (e.g., 2x2.5, 4x5), and year (e.g., 1997, 2004) in
subdirectories.

The emissions files are ordered according to chemical/aerosol mechanism for which they
are used (e.g., combo, trop, strat, gocart, htap). Note that files that are commonly used in
many or all GMI runs (containing information about soil type, vegetation type, leaf area
index, etc.) are located at this directory level in common/.

The input files for GMI chemistry are divided up into photolysis/, surfareadens/,
aerodust/ and misc/. The misc/ directory contains files that are often used for the runs
containing input water, methane, and seasalt data, for example. Under photolysis/, the
files are further subdivided into lookup/, fastj/, fastjx/, fastjx53c/, and uvalbedo/.

Under species/, there are two subdirectories: fixed/ and initial/. The files under
fixed/ contain data for constituents whose concentrations do not change much with time,
such as acetone and methane. The initial/ directory contains files that can be used to
start a model run if a restart file is not available, especially for runs focusing on aerosols.
Currently, there is an aerosol/ directory with relevant input files.

The files under run info/ include representative namelists and restarts files that have
been used. Also under run info/ are potentially useful scripts for running the model and

GMI User’s Guide 23

Chapter 4. GMI Files

generating namelist files. The namelists and restarts for particular model runs are generally
stored under the output directory for the experiment. See Section 4.4.2 for more details.

Please note that the input/ directory is updated periodically so that the copy on
discover matches that on dirac.

4.4.2 Directories under output/

The directories under output/ are organized by chemical mechanism:

• gmic (combo model)

• gmia (aerosol model)

• gmit (troposphere model)

• gmis (stratosphere model)

Please note that the output data from the GMI production runs are located only on
dirac.

Below each of the above subdirectories, the data are then organized by experiment
name (e.g., aura3, aura2for12h, etc.). Each experiment directory is further subdivided by
year and under each year directory, the appropriate files are placed in either stations/,
diagnostics/, or run info/ directories. If data from the spinup runs used to start the
experiment are available, they will be placed in the spinup/ directory at the level of the
year directory.

24 GMI User’s Guide

Chapter 5

Performing Specific Runs

5.1 The GMI Self Contained Test

For testing the model, we provide the directory gmi gsfc/SelfContainedTest. We assume
that the test is being run on discover and uses the combo (strat trop) mechanism. In this
section we provide intructions for running a 2x2.5 resolution combo model simulation.

The latest version of the code requires an appropriate namelist file. We provide this
namelist file, gmi gsfc/SelfContainedTest/namelist2x2.5.in. This namelist file does not re-
quire modification to run the test. All input files required to run the test are located in
the gmi gsfc/SelfContainedTest/input-2x2.5 directory; the namelist uses relative paths to
locate the input files here.

Edit the file gmi gsfc/SelfContainedTest/run ref and provide the full location of the
gmi gsfc/SelfContainedTest directory (no relative paths) by setting

setenv workDir /discover/nobackup/userid/gmi_gsfc/SelfContainedTest

to the appropriate path.

The test can now be run by typing

%qsub run_ref

Once the test has finished the standard output can be checked for a succesful run. The
test run should have created one day’s worth of output data. The standard output file
should include a statement such as

-------- Successful completion of the run -----------

5.2 Standard Runs

The two files mentioned in the preceding section, gmi gsfc/SelfContainedTest/namelist2x2.5.in
and gmi gsfc/SelfContainedTest/run ref can be used a basis for other types of runs, like a
troposphere run, for example. To use the various model configurations, the code will need
to be compiled with one of the following options:

25

Chapter 5. Performing Specific Runs

setenv CHEMCASE troposphere

setenv CHEMCASE stratosphere

setenv CHEMCASE strat_trop

setenv CHEMCASE aerosol

setenv CHEMCASE micro_aerosol

setenv CHEMCASE gocart_aerosol

The CHEMCASE option should also be changed in the run ref file.

5.3 Other Namelist Variables

Three important namelist variables are used to set the number of processors. They are
numWorkerProcs, numLonProcs and numLatProcs, and they satisfy the relation

numWorkerProcs = numLonProcs× numLatProcs.

To execute the code, the number of processorsNcpus is given byNcpus = numWorkerProcs+
1.

The resolution of the run is set using the following variables: i1 gl and i2 gl (first and
last index of the global longitude); ju1 gl and jv1 gl (first global ‘u‘ and ‘v‘ latitude); j2 gl
(last global ‘u&v‘ latitude); kl gl and k2 gl (first and last global altitude).

Remark 3 The resolution of the run that is specified by the above variables should match
the resolution of the metfield files. Metfield files can be found on discover in

/discover/nobackup/projects/gmi/gmidata2/input/metfields/TYPE/RESOLUTION/

and on explore/palm in

/explore/nobackup/projects/gmi/gmidata2/input/metfields/TYPE/RESOLUTION/

The metfield files are listed in a file specified by the namelist variable met filnam list.

5.4 Restart Capabilities

To restart from a previous run, in the nlGmiRestart section of the input namelist file, set

pr_restart = T,

pr_rst_period_days = #.#d0,

Replace ”#.#” with whatever you want the time period to be.
Note that pr rst period days when converted to seconds, must be a multiple of mdt, the
time increment for reading in new met data. Restart netCDF output will be written to a
file named

<problem_name>.rst.nc

26 GMI User’s Guide

5.4. Restart Capabilities

Set the namelist variable, do overwrt rst as appropriate (i.e., do you want to keep just a
single record of restart data or multiple records?).

To create a new namelist input file to use for running from a restart point:

1. Section 7 provides information on a script called MakeNameLists.py that can create
multiple namelist files and handle restarting.

2. Alternatively, you can execute the mk rstnl (”make restart namelist”) script as follows

$gmi/Shared/GmiScripts/mk_rstnl \

-onl <old_nlfile> -nnl <new_nlfile> \

-rst <rst_ncfile> -eda <endGmiDate> -eti <endGmiTime> \

[-npn <problem_name>]

The first four arguments/value pairs are required

old_nlfile : name of the namelist input file that was used to get to

the restart point

new_nlfile : name to call the new namelist input file that will be

used to continue from the restart point

rst_ncfile : name of the netCDF restart file that was written out at

the restart point

endGmiDate : ending date for the new run; note that begGmiDate will

be set by the script to what endGmiDate was when the

netCDF restart file was written out

endGmiTime : ending time for the new run; note that begGmiTime will

be set by the script to what endGmiTime was when the

netCDF restart file was written out

The last argument/value pair is optional

problem_name : new problem name to use in the new namelist input file

For example

$gmi/Shared/GmiScripts/mk_rstnl -onl nlfile.in.old -nnl nlfile.in.new \

-rst ncfile.rst.nc -eda 20061231 -eti 240000

This script automatically creates a new namelist file with various namelist variables mod-
ified or added to accomodate the restart. The script uses information from the netCDF
restart file to accomplish this. Values that the script will use are output to the screen; these
should be reviewed to verify that they are what you expected them to be.

The namelist variables that the script will potentially modify or add are:

GMI User’s Guide 27

Chapter 5. Performing Specific Runs

nlGmiControl =>

problem_name : set to value provided by -npn script argument;

otherwise unchanged from value in old_nlfile

begGmiDate : set to endGmiDate at restart point

begGmiTime : set to endGmiTime at restart point

endGmiDate : set to value provided by -tfi script argument

endGmiTime : set to value provided by -tfi script argument

gmi_sec : set to ending value at restart point

nlGmiMetFields =>

met_infile_num : set to ending value at restart point

mrnum_in : set to ending value at restart point - 1

tmet1 : set to tmet2 at restart point

nlGmiDiagnostics =>

pr_qqjk : set to ending value at restart point

nlGmiRestart =>

rd_restart : set to T

restart_infile_name : set to value provided by -rst script argument

Note that restart dumps can only occur at the end of a met data cycle and you should edit
the new namelist input file directly if you want to change any other namelist variables not
listed above.

If there is more than one record in the restart file, the default is to use the last one. This
can be changed by setting the namelist variable, restart inrec, to a different record number.

To resume running from the restart point:

• Start the run just as you normally would, but this time use the new restart namelist
input file you created above.

28 GMI User’s Guide

Chapter 6

Making Changes to the Code

This chapter briefly describes some factors users should take into account if they want to
modify the code.

6.1 Coding Consideration

Some coding conventions must be followed when making code changes:

• All real variables must be declared ”real*8”.

• All real numbers must have a ”d” exponent even if ”d0”.

• Must use ”# include” for all include statements.

• Use only generic intrinsic function calls (for instance use MOD instead of AMOD).

• Do not use the real or float intrinsic functions: just assign integer variable to a real*8
variable if need be and then proceed.

• Avoid using machine-specific calls.

• Use of appropriate F90 language features is encouraged (dynamic allocation, array
syntax, etc.).

• Use the physical constants and conversion factors defined in
Shared/GmiInclude/gmi phys constants.h.

• Use the time constants and conversion factors defined in
Shared/GmiInclude/gmi time constants.h.

6.2 Making Changes in the Code

Before making any change in the code, it is important to understand its directory structure
and the concept of components. The code has been reorganized and major components
were isolated with the goals of making the code more readable, flexible, accessible, modular

29

Chapter 6. Making Changes

and easy to maintain. We grouped variables belonging to a given component into a derived
type. The following derived types were created to classify and manipulate GMI variables:

Advection: Contains advection related variables

Chemistry: Contains chemistry related variables

Convection: Contains convection related variables

Deposition: Contains deposition related variables

Diffusion: Contains diffusion related variables

Emission: Contains emission related variables

SpeciesConcentration: Responsible for manipulating species concentration related vari-
ables.

For each member variable (kept private and only directly accessible by the component it
belongs to) of the derived type, we wrote routines (whenever necessary) to manipulate it:
Allocate (to allocate the variable once), Set (to set the value of the variable anywhere in the
code), and Get (to obtain the value of the variable anywhere in the code). It is important to
note that the three routines are the only operations directly done on derived type member
variables.

For each component, we wrote three new interface routines to standardize the way
components are handled:

InitializeComponent: called once to read namelist file (only the section corresponding
to the component), do initial settings and perform variable allocation.

RunComponent: used to invoke the component for model time stepping.

FinalizeComponent: called if necessary to deallocate variables.

The above routines are the only ones accessible by the main program and they completely
hide the legacy system. They have as arguments only derived types. The only way to
have access to a member variable of a derived type is through the associated Set and Get
routines.

In addition to the components listed above, we created three other components to pro-
vide services to the seven main components. They are:

gmiClock: Contains clock information necessary for the model to advance in time.

gmiGrid: Contains grid-related data.

gmiDomain: Contains subdomain information.

MetFields: Responsible for updating all the meteorological related variables (by reading
from a file or deriving from existing variables), and passing them to other components
as needed.

30 GMI User’s Guide

6.2. Making Changes in the Code

Diagnostics: Responsible for setting the necessary diagnostics flags and passing the appro-
priate information to other components (that will do proper allocation of diagnostics
variables they own).

Example 1 We want to provide an example on how the componentization was used to drive
the Chemistry component. We list the arguments of the three routine interface:

InitializeChemistry(Chemistry, Diagnostics, namelistFile, gmiGrid, gmiDomain)

RunChemistry (Chemistry, Emission, MetFields, Diagnostics,

SpeciesConcentration, gmiClock, gmiGrid, gmiDomain)

FinalizeChemistry (Chemistry)

Here, namelistFile is the namelist file.

The code associated with the first set of derived types is located in the Components/ di-
rectory whereas the one for the second set is in the Shared/ directory (providing sup-
port to major components). When making changes in the code, we need to identify
where the modifications should occur. Assume that we want to add a new method for
computing the tropopause pressure. The new routine should be added in the directory
Shared/GmiMetFields/ containing modules/routines manipulating metFields variables.

6.2.1 Adding a Variable to a Derived Type

Each derived type defined in the code is part of a module. To add a new variable to a
derived type, we need to do the following operations:

1. Define the variable

2. Write a routine to allocate it (if an array)

3. Write a routine to get its value (if needed outside the component the derived type
belongs to)

4. Write a routine to set its value (if updated outside the component the derived type
belongs to)

5. Deallocate the derive type (if an array)

As an example, assume that we want to output the overhead ozone column that is calculated
inside the photolysis package. The variable overheadO3col needs to be created. Since it will
only be updated in the Chemistry component (where the Photolysis is located), the variable
will be part of the Chemistry component and should be a member of the Chemistry derived
type. In addition, overheadO3col will be visible outside the component. The following will
be added in the file:

gmi_gsfc/Components/GmiChemistry/chemistryMethod/GmiChemistryMethod_mod.F90

GMI User’s Guide 31

Chapter 6. Making Changes

real*8, pointer :: overheadO3col(:,:,:) => null()

subroutine Allocate_overheadO3col (self, i1, i2, ju1, j2, k1, k2)

integer , intent(in) :: i1, i2, ju1, j2, k1, k2

type (t_Chemistry), intent(inout) :: self

Allocate(self%overheadO3col(i1:i2, ju1:j2, k1:k2))

self%overheadO3col = 0.0d0

return

end subroutine Allocate_overheadO3col

subroutine Set_overheadO3col (self, overheadO3col)

real*8 , intent(in) :: overheadO3col(:,:,:)

type (t_Chemistry), intent(inout) :: self

self%overheadO3col(:,:,:) = overheadO3col(:,:,:)

return

end subroutine Set_overheadO3col

subroutine Get_overheadO3col (self, overheadO3col)

real*8 , intent(out) :: overheadO3col(:,:,:)

type (t_Chemistry), intent(in) :: self

overheadO3col(:,:,:) = self%overheadO3col(:,:,:)

return

end subroutine Get_overheadO3col

6.2.2 Adding Chemical Mechanisms

Currently, the GMI code has six chemical mechanisms:

1. aerosol

2. micro aerosol

3. gocart aerosol

4. stratosphere

5. strat trop (combined stratosphere/troposphere)

6. troposphere

The code portion for each mechanism is contained in its own subdirectory (located at Com-
ponents/GmiChemistry/mechanisms/) having the name of the corresponding mechanism.
It is organized into two subdirectories (see Chapter 2): include setkin/ and setkin/.

If you want to add another chemical mechanism, just create a new subdirectory from
Components/GmiChemistry/mechanisms/ and move the setkin files there. To compile the
code, follow the compilation procedures as described in Section 3.4.

The selection of a particular chemical mechanism is done through the environment
variable CHEMCASE in the file cshrc.gmi (see Chapter 3).

32 GMI User’s Guide

6.2. Making Changes in the Code

Remark 4 It is important to note that if you make changes specific to a particular chem-
ical mechanism (i.e., outside setkin files), use the variable “chem mecha” to delimit your
changes.

6.2.3 netCDF Output Files

We modified the process of producing netCDF output files. All the operations needed to
manipulate a file are now included in a unique Fortran module. In addition, the interface
routines (initialize, control and finalize) have standard interfaces and should not be changed.
If we want to add another diagnostics variable to a netCDF output file, we may only have
to make changes in the module: declare the variable, allocate it, update its value every time
step, communicate its value to the root processor, write it out by the root processor and
deallocate it.

GMI User’s Guide 33

Chapter 7

Script Tools

7.1 Internal Scripts

The GMI code comes with several scripts that allow users to perform commands such as
searching from words within the code, counting the number of lines in the source code,
constructing a restart input namelist file, etc. All the scripts are located in the directory
Shared/GmiScripts and can be executed from anywhere in the code. They are:

check ver searches for all file names in the current directory containing ”search string”
and replaces the first instance of ”search string” with ”replace string”.
Usage: chname search string replace string

clgem deletes a number of the files created when gmi is run.

doflint runs the flint Fortran source code analyzer on the GMI code.
It can be run on any machine where flint is available (e.g., tckk), and where the GMI
code has been installed and compiled.
Usage: doflint

gmi fcheck can be used to run the Flint source code analyzer on gmi gsfc.

gmi fcheckrm can be used after ”gmi fcheck” is run on the gmi gsfc code to strip out
Flint messages that are of no consequence. Gmi fcheckrm uses gmi fcheck.out as its
input file, and produces a new file called gmi fcheckrm.out.

grabf grabs all of the ”.f90” files and puts them in $gmi/CODE. These files then can be
ftped to a machine with access to the FORTRAN Lint (flint) source code analyzer
tool.

lastmod lists all files in reverse order of when they were last modified. It is useful for
determining which routines a user has modified since they were last installed in the
code.
Usage: lastmod [tail num]

lastmod all lists all files in reverse order of when they were last modified. It is useful for
determining which routines a user has modified since they were last installed in the

34

7.1. Internal Scripts

code.
Usage: lastmod all [tail num]

line count gmi does a variety of line counts on the GMI source code.

list species lists all the species labels for the selected chemical mechanism (environment
variable CHEMCASE).
Usage: list species

lnsdat (lns (symbolic link) data) symbolically links the GMI input file directory to ”gmi data”
in the current directory. The GMI namelist file can then point to a generic gmi data
directory.

mk rstnl (make restart namelist) constructs a restart input namelist file (see Section 5.4
for more information).

savit creates a clean copy of a GMI code tree (considered only files with extension [.F90—.c—.h])
in a tmp directory, tars it up into a tarfile named gmisav.tar, and puts this file in the
directory where your gmi directory resides. The tmp files are then deleted.

savset creates a clean copy of the GMI setkin files (considered only files with extension
[.F90—.c—.h]) in a tmp directory, tars it up into a tarfile named setsav.tar, and puts
this file in the directory where your gmi directory resides. The tmp files are then
deleted.

seabf searches through the ”.F90” source files for a particular string (case insensitive).
Output comes to the screen unless an optional second file name argument is provided.
Usage: seabf search string [file name]

seabf word searches through the ”.F90” source files for a particular word (case insensitive).
Output comes to the screen unless an optional second file name argument is provided.
Usage: seabf word search string [file name]

seac searches through the .c source files for a particular string (case insensitive). Output
comes to the screen unless an optional second file name argument is provided.
Usage: seac search string [file name]

seah searches through the ”.h” include files for a particular string (case insensitive). Output
comes to the screen unless an optional second file name argument is provided.
Usage: seah search string [file name]

seah word searches through the ”.h” include files for a particular word (case insensitive).
Output comes to the screen unless an optional second file name argument is provided.
Usage: seah word search string [file name]

sealf searches through the ”.f90” source files for a particular string (case insensitive). Out-
put comes to the screen unless an optional second file name argument is provided.
Usage: sealf search string [file name]

GMI User’s Guide 35

Chapter 7. Script Tools

seamf searches through the ”Makefile” and ”Makefile.cpp” source files for a particular
string (case insensitive). Output comes to the screen unless an optional second
file name argument is provided.
Usage: seamf search string [file name]

7.2 Production Tools

There is a collection of python scripts for doing GMI production runs. These scripts create
namelist files for each segment of the production run (usually date segments), start each
segment of a production run, monitor the runs, and sends status updates to a designated
email address. The following scripts can be used seperately or together for doing productions
runs:

MakeNameLists.py creates namelist files by using a base namelist

ChainRuns.py runs multiple segments of a GMI production run, monitors the progress,
and sends status updates

The first step in using either of these scripts is to edit the ExperimentConstants.py file.
The following are the configurable options inside this file:

MAILTO a single email address or a comma seperated list of email addresses to send
updates to

NUM CPUS total number of processors (slaves+master)

BASE NAMELIST the base namelist file

NUM NAMELISTS the number of total namelists to be create. We suggest setting this
to 12

START MONTH usually ”jan” for january; all other months follow the same three letter
abbreviation

NUM ARGS only developers should change this option

NAMELISTS the name of the file the will contain a list of all the namelists in the pro-
duction run; they are listed in the order of execution

RUNREF the base batch file for submission to the discover PBS batch system

36 GMI User’s Guide

7.2. Production Tools

QUEUEMINUTESALLOWED the number of minutes a segment should take to run,
including the estimated wait time in the queue

Next, a run directory should be created. The run directory should have a sample
RUNREF file and a BASE NAMELIST in it; in this example we use the files run ref and
sample.in, respectively.

In the run ref file, make sure you change the group list, the workDir (which is the run
directory), and the path to the executable (GEMHOME). Also, check the number of cpus.

For the BASE NAMELIST file, check that the restart file is correct, and other input
file names (anything that contains a string infile name). This file will be used as a base for
all your production segments. The job name, date, restart file (previous month), and the
number of days to run will be changed by the script.

Remark 5 If you limit the number of segments to 12 (one year) you should not have to
make any other modifications EXCEPT when you are intending to run a February segment
with 29 days. You will have to change the namelist variable (after you run the Make-
NameLists.py script) to tfinal days to 29. Users are urged to use caution when using the
MakeNameLists.py and check their work carefully.

Once you’ve prepared the run directory execute the MakeNameLists.py script from the
run directory (substitute your own directory names here):

% cd runDirectory

% python /yourpath/MakeNameLists.py -d ‘pwd‘

You should see output similiar to this:

nameListPath = /yourpath

nameListFile = sample.in

numberOfNameLists = 12

startMonth = jan

startYear = 1994

start month 0 jan

gmit_sample_1994_feb feb1994.list 28 940201 940228 gmit_sample_1994_jan

gmit_sample_1994_mar mar1994.list 31 940301 940331 gmit_sample_1994_feb

gmit_sample_1994_apr apr1994.list 30 940401 940430 gmit_sample_1994_mar

gmit_sample_1994_may may1994.list 31 940501 940531 gmit_sample_1994_apr

gmit_sample_1994_jun jun1994.list 30 940601 940630 gmit_sample_1994_may

gmit_sample_1994_jul jul1994.list 31 940701 940731 gmit_sample_1994_jun

gmit_sample_1994_aug aug1994.list 31 940801 940831 gmit_sample_1994_jul

gmit_sample_1994_sep sep1994.list 30 940901 940930 gmit_sample_1994_aug

gmit_sample_1994_oct oct1994.list 31 941001 941031 gmit_sample_1994_sep

gmit_sample_1994_nov nov1994.list 30 941101 941130 gmit_sample_1994_oct

gmit_sample_1994_dec dec1994.list 31 941201 941231 gmit_sample_1994_nov

You may need to make a change to the sample.in namelist. Open the namelists.list file
and change the name of the first namelist to be consistent with the rest. For example: (you
can avoid this step by naming the BASE NAMELIST something like gmit sample 1994 jan.in)

Before:

GMI User’s Guide 37

Chapter 7. Script Tools

sample.in

gmit_sample_1994_feb.in

gmit_sample_1994_mar.in

gmit_sample_1994_apr.in

gmit_sample_1994_may.in

gmit_sample_1994_jun.in

gmit_sample_1994_jul.in

gmit_sample_1994_aug.in

gmit_sample_1994_sep.in

gmit_sample_1994_oct.in

gmit_sample_1994_nov.in

gmit_sample_1994_dec.in

After:

gmit_sample_1994_jan.in

gmit_sample_1994_feb.in

gmit_sample_1994_mar.in

gmit_sample_1994_apr.in

gmit_sample_1994_may.in

gmit_sample_1994_jun.in

gmit_sample_1994_jul.in

gmit_sample_1994_aug.in

gmit_sample_1994_sep.in

gmit_sample_1994_oct.in

gmit_sample_1994_nov.in

gmit_sample_1994_dec.in

Rename the file that you just changed. For example:

%mv sample.in gmit_sample_1994_jan.in

Remark 6 Make sure you have ALL your metFields files in the run directory, as the Chain-
Runs.py script assumes this location.

Modify your crontab to run the ChainRuns.py script at the proper time. For additional
documentation on the crontab tool please reference:

http://www.adminschoice.com/docs/crontab.htm

Here is an example of a ChainRuns crontab entry:

20 11 15 6 * /usr/bin/python /yourPath/ChainRuns/ChainRuns.py -d runDirectory >> /yourPath/Logs/fromCron.out

In this example, the ChainRuns.py script will run at 11:20 am on June 15th.

38 GMI User’s Guide

Chapter 8

How to Use CVS

8.1 What is CVS?

CVS is an acronym for the ”Concurrent Versions System”. It is a ”Source Control” or
”Revision Control” tool having the following features:

• Non-proprietory and can be downloaded from the internet;

• Allows users to work simultaneously on the same file, keep track of changes by revision,
tag and date;

• Can obtain an earlier version of the software easily;

• Allows the user to track the supplier’s software releases while making code changes
locally.

• Enables the user to merge code changes between his version and supplier’s automati-
cally and identify problems if merge presents contradictions;

• A user of CVS needs only to know a few basic commands to use the tool.

Here are some important terms used with CVS:

Repository: The directory storing the master copies of the files. The main or master
repository is a tree of directories.

Module: A specific directory (or mini-tree of directories) in the main repository. Modules
are defined in the CVS modules file.

RCS: Revision Control System. A lower-level set of utilities on which CVS is layered.

Check out: To make a copy of a file from its repository that can be worked on or examined.

Revision: A numerical or alpha-numerical tag identifying the version of a file.

39

Chapter 8. How to Use CVS

8.2 How to Use CVS

There are two ways you can use CVS:

1. Use CVS to keep up-to-date with the GMI code changes. This will require a source-
motel account.

2. Use CVS to track both GMI code releases and your own changes. You can do this
either on sourcemotel or on your local machine (with your own CVS installation).

8.3 Use CVS to Keep Up-to-Date with GMI Source Code

Changes

CVS is used to keep track of collections of files in a shared directory called ”The Repository”.
Each collection of files can be given a ”module” name, which is used to ”checkout” that
collection. After checkout, files can be modified (using your favorite editor), ”committed”
back into the Repository and compared against earlier revisions. Collections of files can be
”tagged” with a symbolic name for later retrieval. You can add new files, remove files you
no longer want, ask for information about sets of files in three different ways, produce patch
”diffs” from a base revision and merge the committed changes of other developers into your
working files. In this section, we explain how these operations are done with the GMI code.
It is assumed that the user has an account on sourcemotel and that CVS is installed on his
local computer.

We assume that you have already obtained a copy of the code (say the most recent
release) from sourcemotel by using the command:

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co gmi_gsfc

A directory labeled gmi gsfc (containing the code) will be created at the location where the
command was executed.

Assume that you want to know all the different available releases (with the associated
tags) of the GMI code. From the gmi gsfc directory, type

%cvs status -v Makefile

to obtain the status of the file Makefile. The results give (first few lines):

===

File: Makefile Status: Up-to-date

Working revision: 1.18

Repository revision: 1.18 /cvsroot/gmi/gmi_gsfc/Makefile,v

Sticky Tag: (none)

Sticky Date: (none)

Sticky Options: (none)

Existing Tags:

40 GMI User’s Guide

8.3. Use CVS to Keep Up-to-Date with GMI Source Code Changes

fromGEMHOME_to_GMIHOME (revision: 1.18)

NOxEmissionsScalingFactors_v3 (revision: 1.17)

NOxEmissionsScalingFactors_v2 (revision: 1.17)

Lightning_Branch_fvgcm_ap1_0 (revision: 1.14)

NOxEmissionsScalingFactors_v1 (revision: 1.17)

Lightning_Branch_fvgcm_default (revision: 1.14)

Lightning_Branch_DAS_default_fix (revision: 1.14)

Lightning_Branch_DAS_default (revision: 1.14)

Lightning_Branch_DAS_ap1_0 (revision: 1.14)

SurfaceConstituents_for_ColumnDiagnostics (revision: 1.17)

ImplementationMEGANv1 (revision: 1.17)

Flux_Freq_Routines_in_Modules (revision: 1.16)

GeorgiaTechCloudModule_v2 (revision: 1.16)

HorizontalDomainForFreqOutputs (revision: 1.16)

GeorgiaTechCloudModule_v1 (revision: 1.16)

One can observe that the code has four revisions (1.18, 1.17, 1.6 and 1.14) in the above
tags.

%cvs export [-D today][-r tag] gmi_gsfc

gives an exported version of the gmi gsfc directory. The expressions in [] are options. ‘-D
today’ gives the latest version of the code. The user can also specify ”-D ’September 26,
2007’” (note that the date is in single quotes) for the version from that day, or use ’-r release-
1-17’ for release 1.17 (release-1-17 is a CVS tag), or ’-r NOxEmissionsScalingFactors v3’ for
the gmi gsfc directory with tag NOxEmissionsScalingFactors v3.

%cvs checkout gmi_gsfc

provides in addition to exported version, CVS information. With such information, users
will be able to keep up-to-date with our release automatically with the simple cvs update

command (instead of having to manually insert the changes we broadcast). Once you check
out a version of the code, you form a ’working directory’.

%cvs update gmi_gsfc

only works if a user has a cvs-checked-out version. This brings the changes made in the
master repository to the user’s working directory. The user may only want to know which
files were modified without making any update:

%cvs -n update gmi_gsfc

An example of the print out from the cvs update command:

Example 2 You want to checkout a copy of the GMI code from sourcemotel. Then type

%cvs checkout gmi_gsfc

GMI User’s Guide 41

Chapter 8. How to Use CVS

It creates a copy of the code in your own directory. Assume someone else has made some
changes in the code and the next code release is available. You can simply do a cvs update

to bring the new changes in the new release into your copy:

%cd gmi_gsfc

%cvs update

A list is printed on your screen to let you know which files were updated (a ’U’ in front of
the file) from the new release, and which files were modified (a ’M’ in front of the file) and
any conflict that may result from this update.

Remark 7 Note that doing cvs update under the gmi gsfc directory will automatically
update the entire code. You can update an individual directory or file by going into the
directory and issuing cvs update- which updates that directory and any sub-directories, or
cvs update filename- which updates only that file.

%cvs diff filename

This does the differencing between the file in your working repository with the one you
checked out from the sourcemotel repository.

Example 3 Assume that you want to compare the file Makefile (inside gmi gsfc) from your
working repository with the one on sourcemotel in the release with TAG NOxEmissionsS-
calingFactors v3:

%cvs diff -r NOxEmissionsScalingFactors_v3 Makefile

Index: Makefile

===

RCS file: /cvsroot/gmi/gmi_gsfc/Makefile,v

retrieving revision 1.17

retrieving revision 1.18

diff -r1.17 -r1.18

9,11c9

< LIBS = -L$(LIB_DIR)

<

< #FFLAGS+=$(INCS)

> LIBS = -L$(LIB_DIR)

38,39c36,37

< #all: packageddir shared components

< all: packageddir shared components applications

> new: packageddir shared components applications

> all: packageddir shared components applications legacy

48a47,49

> legacy:

42 GMI User’s Guide

8.4. Use CVS to Track Both New Releases and Your Changes

> (cd $(GMIHOME)/gem; $(MKMF); make)

>

57,58c58,59

< # @$(MAKE) -C $(APPLICATIONS) EmissionDriver.ex

< # @$(MAKE) -C $(APPLICATIONS) DiffusionDriver.ex

> # @$(MAKE) -C $(APPLICATIONS) EmissionDriver.ex

> # @$(MAKE) -C $(APPLICATIONS) DiffusionDriver.ex

68a70

> (cd $(GMIHOME)/gem; make clean)

To list log messages and status of the master repository, issue the command:

%cvs log filename

8.4 Use CVS to Track Both New Releases and Your Changes

If you want to maintain your own code and keep track of the changes from sourcemotel,
what you should do is create your own repository and use the ‘vendor branch’ concept in
CVS. If you do it from your local machine, set

setenv CVSROOT some-home-directory-on-your-local-machine

(e.g. setenv CVSROOT /home/userID/gmi repository)

in your .cshrc file.

To initialize the repository, type

%cd /home/userid/gmi_repository

%cvs init

Now you can checkout any release of the GMI code. Assume that you want to obtain
the release HorizontalDomainForFreqOutputs

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co -r \

HorizontalDomainForFreqOutputs gmi_gsfc

If you only want the Components/ directory, type

%cvs -d usrid@sourcemotel.gsfc.nasa.gov:/cvsroot/gmi co -d Components -r \

HorizontalDomainForFreqOutputs gmi_gsfc/Components

You can now work with the code. If you make some changes and want to bring them to
your repository to keep, do the following from the directory gmi repository/gmi gsfc:

%cvs diff > output.diff

%cvs update

%cvs commit -m ’message for the commit’

GMI User’s Guide 43

Chapter 8. How to Use CVS

If you want to create a new file that does not exist in the repository and you want to add
it in the repository, type (from the directory where the new file resides)

%cvs add new_file

Example 4 Assume that you want to add a new chemical mechanism, new chem. In the di-
rectory Components/GmiChemistry/mechanisms, you have created the directory new chem/

that contains the subdirectories include setkin/ and setkin/. To add the directory structure
of the new chemical mechanism into the repository, do the following:

%cd Components/GmiChemistry/mechanisms

%cvs add new_chem/

%cvs commit new_chem/

%cd new_chem

%cvs add include_setkin/

%cvs commit include_setkin/

%cd include_setkin

%cvs add *

%cd ../

%cvs add setkin/

%cvs commit setkin/

%cd setkin

%cvs add *

8.5 Where To Obtain CVS

https://ccvs.cvshome.org/servlets/ProjectDocumentList

44 GMI User’s Guide

Chapter 9

Parallel Performance

Over the past few years, the GMI code has evolved to become a componentized software
package. The code has been subject to many modifications in terms of software design and
implementation. These modications may add overheads in the computing time and may
lead to the deterioration of the parallel performance of the code. Therefore it is important
to continually monitor the performance of GMI by profiling the code and by studying how
the code scales across processor.

Profiling a code can be defined as the use of software tools to measure a program’s
run-time characteristics and resource utilization. It is important to identify where the
bottlenecks are and why these areas might be causing problems. By utilizing profiling
tools and techniques, we want to learn which areas of the code offer the greatest potential
performance increase. We want to target the most time consuming and frequently executed
portions of the program for optimization with the objective of reducing the overall wall
clock execution time.

In this chapter, we only provide a simple analysis to verify if the current version of the
code produces similar performance with respect to previous versions. The model integration
was carried out on discover:

1. Linux Networx Cluster

2. 2560 CPUs

3. Four processors per node

4. 160 GB disk, 4 GB of RAM per node

5. 3.2 GHz of processor speed

We use the combined stratosphere/troposphere chemical mechanism:

• 124 species

• 121 chemical species

• 117 active chemical species

• 68 advected species

45

Chapter 9. Parallel Performance

• 2× 2.5 honrizontal resolution and 42 vertical levels

• model time step of 30 minutes

• one-day integration

We ran the code using 63 and 121 worker processors respectively and recorded the timing
information (obtained by setting the namelist variable do ftiming):

9x7 = 63 worker processors

Block Min Time Max Time Avg Time

whole_GMI 842.9362 843.0141 842.9601

gmiTimeStepping 773.3378 775.4813 774.0801

procSyncBegStepping 1.0650 3.2106 1.8059

gmiEmission 7.5113 8.0610 7.5410

gmiDiffusion 2.0009 2.3482 2.1170

procSyncBeforeAdvection 0.2282 1.1347 1.0033

gmiAdvection 77.9177 78.9366 78.8842

gmiConvection 4.6655 12.6235 8.4833

gmiDryDeposition 0.5783 1.1403 0.7806

gmiWetDeposition 7.1136 8.9838 7.9951

gmiChemistry 140.5785 497.1423 341.6406

gmiPhotolysis 5.1924 48.1437 29.2000

procSyncEndStepping 169.4039 523.4902 322.9148

gmiWritingOutput 35.1658 45.5605 44.0967

11x11 = 121 worker processors

Block Min Time Max Time Avg Time

whole_GMI 541.0739 541.1197 541.1028

gmiTimeStepping 461.5172 467.9213 464.6045

procSyncBegStepping 0.9933 7.4049 4.0861

gmiEmission 11.0396 12.0051 11.2219

gmiDiffusion 0.7928 1.3231 1.0657

procSyncBeforeAdvection 0.6895 2.1456 1.7608

gmiAdvection 55.3105 56.1626 55.8819

gmiConvection 1.6163 6.0775 4.1244

gmiDryDeposition 0.2393 0.4921 0.3519

gmiWetDeposition 3.7472 5.0127 4.3225

gmiChemistry 40.9454 322.2511 175.7995

gmiPhotolysis 0.4408 28.4638 15.5451

procSyncEndStepping 57.8476 343.3024 205.5430

46 GMI User’s Guide

gmiWritingOutput 29.5422 35.9619 34.0993

Note the following remarks:

1. The profiling is done on the worker processors only and does not included the intial-
ization stage.

2. The presented timing numbers mainly included the profiling of the time stepping
routine, gmiTimeStepping:

• At the beginning of the routine there is an MPI barrier call (procSyncBegStep-
ping)

• At the end of the routine there is an MPI barrier call (procSyncEndStepping)

3. The Chemistry component is called at the end of gmiTimeStepping. If we focus on
gmiChemistry and procSyncEndStepping, we observe a load inbalance within Chem-
istry. It is more likely due to the solver where the tasks assigned to each processor
are not evenly divided.

4. Note that there are only 68 advected species while 117 active chemical species are
used. In a previous study (done in 2004), it was observed that if Advection and
Chemistry have the same number of species, Advection will dominate calculations as
the number of processors increases. It was recommended then to reduce the number
of advected species. It is no surprise that Advection is less computational intensive
than Chemistry.

5. The computing time decreases as the number of processors increases with a gain of
about 38% in time.

6. The results shown here are consistent with what was obtained using previous versions
of the code.

GMI User’s Guide 47

Bibliography

[1] D.B. Considine, P.S. Connell, D.J. Bergmann, D.A. Rotman, and S.E. Strahan. Sen-
sitivity of global modeling initiative ctm predictions of anatatic ozone recovery to gcm
and das generated meteorological fields. preprint.

[2] D.B. Considine, A.R. Douglass, P.S. Connell, D.E. Kinnison, and D.A. Rotman. A polar
stratospheric cloud parameterization for the global modeling initiative three dimensional
model and its response to stratospheric aircraft. J. Geo. Res., 105(D3):3955–3973, 2000.

[3] A.R. Douglass, M.J. Prather, T.M. Hall, S.E. Strahan, P.J. Rasch, L.C. Sparling, L. Coy,
and J.M. Rodriguez. Choosing meteorological input for the Global Modeling Initiative
assessment of high-speed aircraft. J. Geo. Res., 104(D22):27545–27564, 1999.

[4] D.E. Kinnison, P.S. Connell, J.M. Rodriguez, D.A. Rotman, D.B. Considine, J. Tan-
nahill, R. Ramaroson, P.J. Rasch, A.R. Douglass, S.L. Baughcum, L. Coy, D.W. Waugh,
S.R. Kawa, and M.J. Prather. The Global Modeling Initiative assessment model: ap-
plication to high speed civil transport perturbation. J. Geo. Res., 106(D2):1693–1711,
2001.

[5] N. Meskhidze, R.E.P. Sotiropoulou, A. Nenes, J. Kouatchou, B. Das, and J. M. Ro-
driguez. Aerosol-cloud interactions in the NASA GMI: model development and indirect
forcing assessments. Atmos. Chem. Phys. Discuss., 7:14295–14330, 2007.

[6] D.A. Rotman, J.R. Tannahill, D.E. Kinnison, P.S. Connell, D. Bergmann, D. Proctor,
J.M. Rodriguez, S.J. Lin, R.B. Rood, M.J. Prather, P.J. Rasch, D.B. Considine, R. Ra-
maroson, and S.R. Kawa. The Global Modeling Initiative assessment model: model
description, integration, and testing of the transport. J. Geo. Res., 106(D2):1669–1691,
2001.

[7] S.E. Strahan, B.N. Duncan, and P. Hoor. Observationally-derived diagnostics of trans-
port in the lowermost stratosphere and their application to the GMI chemistry transport
model. Atmos. Chem. Phys., 7:2435–2445, 2007.

48

Appendix A

Include Files

The files presented here are located in Config/ directory. They are required for the prepro-
cessing and compilation of the code.

gem config.h ,compiler.mk and libraries.mk
Sets configuration parameters for gem Makefiles. The following information must be pro-
vided:

• Location of the netCDF include files (variable INCLUDES NETCDF) and library
(NETCDFLibs)

• Location of the ESMF include files (variable INCLUDES Esmf) and library (Esm-
fLibs)

• Location of the MPI include files (variable INCLUDES MSG) and library (MSGLIB-
DIR)

• Commands to call the C (variable CC) and Fortran (FC) compilers.

• Compilations options.

gem options.h
To select the package, the chemical solver, and the desire compilation mode (debugging,
optimization, profiling).

gem sys options.h
To select the architecture and the message passing options. The user must set the variables:

• ARCH OPTION: to determine the platform used.

• MSG OPTION: for the message passing option. Choose MSG NONE if you want the
single processor version of the code, or MSG MPI if you prefer the multiple processor
one with MPI as message passing.

49

Chapter A. Include Files

• MPI 2 OPTION: to determine if you want to include or not MPI-2 calls. Consider
NO MPI 2 if the platform you will be running the code on does not support MPI-2.
Otherwise choose WITH MPI 2.

gem msg numbers.h
Contains the message numbers used to identify specific messages in the message passing
calls. Should not be edited.

gem rules.h and rules.mk
Contains suffix dependencies and compilation rules for all Makefile/Makefile.cpp files in
directories that contain source files. Should not be edited.

With time, we will make necessary changes to remove all the ”.h” files and only keep the
”.mk” ones.

50 GMI User’s Guide

Appendix B

Single/Multiple Processor Runs

We describe how to carry out single (MPI is not used) or multiple processor runs. Before
you compile the code, you need to edit the file include/gem sys options.h and set

#define MSG_OPTION MSG_NONE

if you want to produce the executable for a single processor run, or

#define MSG_OPTION MSG_MPI

for the multiple processor run.
After you obtained the executable, you need to edit your input namelist file.

Namelist Variables for Single CPU

oneProcRun = T

numWorkerProcs = 1

numLonProcs = 1

numLatProcs = 1

Namelist Variables for Multiple CPUs

oneProcRun = F

numWorkerProcs = 15

numLonProcs = 5

numLatProcs = 3

The following relationships need to be satisfied in order to run the code:

numWorkerProcs = numLonProcs× numLatProcs

i2 gl−i1 gl+1
numLonProcs ≥ gmi nborder

j2 gl−ju1 gl+1
numLatProcs ≥ gmi nborder

51

Chapter B. Single/Multiple Processor Runs

and the number of processors to be requested to submit the executable is equal to num-
WorkerProcs + 1.

Here i2 gl, i1 gl, j2 gl, ju1 gl, and gmi nborder are namelist variables (see Appendix F).

52 GMI User’s Guide

Appendix C

GMI NetCDF Files

We list all the NetCDF output files that the GMI code produces. For each file we provide:

• The list of variables that can be written out,

• The possible output frequencies of the data.

In Table C.1, we list the netCDF files that could be produced by the code.

File Description

col Column diagnostics at prescribed stations.
const Main output file producing at least species concentrations.
aerDust Mainly outputs optical depth for aerosols.
flux File for fluxes.
freq# Outputs selected variables at any specified frequency.
overpass# Outputs selected variables that are produced at a prescribed time range.
qj File for photolysis rate constants.
qk File for thermal rate constants
qqjk File for rates of photolytic and thermal processes.
restart Restart file.
sad File for surface area densitity related variables.
cloud File containing cloud related variables.
tend Tendencies file.

Table C.1: GMI netCDF files. Here # is 1, 2, 3, or 4.

All the output files contain at least the following variables (if necessary):

ai Hybrid pressure edge term

bi Hybrid sigma edge term

am Hybrid pressure term

53

Chapter C. NetCDF Files

bm Hybrid sigma term

pt

pressure Pressure (mb)

latdeg Latitude (deg)

londeg Longitude (deg)

mcor Grix box area (m2)

nymd Current date (YYYYMMDD)

nhms Current time (HHMMSS)

Table C.2 gives a summary of the information contained in the netCDF files introduced
in Section 4.3.2.

File Default Suffix Variables Mean Snapshot

col .col.nc psf X
humidity X
pot temp X
const X

const .const.nc const X X
psf X X
kel X X
relHumidity X X
gridBoxHeight X X
tropopausePress X X
potentialVorticity X
overheadO3Col X X
drydep accum.
wetdep accum.
semiss out accum.
aerosolSurfEmiss accum.
emiss 3d out accum.
aerosolEmiss3d accum.
lightning no accum.
flashrate accum.
convectiveMassFlux accum.
mass X X
metwater X X
dms oh X X
dms no3 X X
so2 oh X X
so2 h2o2 X X
so2 o3 X X

54 GMI User’s Guide

aeroDust .aerodust.nc optDepth X X
aerosol column mass X X
psf X X
gridBoxHeight X X

overpass# .overpass#.nc const X X
relHumidity X
gridBoxHeight X
tropopausePress X X
mass X
psf X X
kel X X
cloudOptDepth X X
overheadO3Col X X
metwater X
qj X
qqj X
qqk X

freq# .freq#.nc const X
const column X X
const surface X X
psf X X
kel X X
mass X X
gridBoxHeight X X
relHumidity X X
metwater X X
overheadO3col X X
tropopausePress X X
potentialVorticity X X

cloud .cloud.nc relHumidity X X
psf X X
kel X X
mass X X
gridBoxHeight X X
cloudFraction X X
liqWaterPath X X
effectiveRadii X X
cloudOpticalDepth X X
totAerosolSulfate X X
cloudDroplet X X
cloudAlbedo X X

Mass Flux .flux.nc const flux x X X
const flux y X X
const flux z X X

GMI User’s Guide 55

Chapter C. NetCDF Files

psf X
amf X X

qj .qj.nc qj X X
opt depth X X
O3+hv− >O1D X X

qk .qk.nc qk X X

qqjk .qqjk.nc qqj X X
qqk X X
yda X

restart .rst.nc const X
h2ocond X
pctm2 X

sad .sad.nc sad X X
hno3cond X X
hno3gas X X
h2oback X X
h2ocond X X
reffsts X X
reffice X X
vfall X X

tend .tend.nc ncumt X

Table C.2: Content of each GMI netCDF output file.

For each of the files in Section 4.3.2, we provide in Table C.3 the frequency in which
data can be written in the file.

File Same Freq Indepen Freq Monthly 1st & 15th Any freq Last Step

const X X X X
aeroDust X X X X
cloud X X X X
qj X X X X
qk X X X X
qqjk X X X X
sad X X X X
tend X X X X
Mass Flux X X X X
overpass# X X X X
freq# X X X X X
restart X X X X
col X

Table C.3: Frequency of GMI netCDF output files.

56 GMI User’s Guide

GMI User’s Guide 57

Appendix D

Important Features

D.1 From Species Indices to Species Names

In older versions of the code, setting namelist variables using species indices was not a
simple task. When moving from one experiment to another, users were be interested in a
given set of species but had to reset namelist variables matching species with their indices.
In fact, their main concern was to know if a given species is part of a chemical mechanism,
but not its index. Mistakes were unintentionally introduced, leading to a waste of time
and computing resources. To alleviate these problems, we now use species labels instead of
indices in the namelist file.

We wrote a Fortran module (GmiSpeciesRegistry mod containing the function getSpeciesIndex)
providing the species index given its name. The function getSpeciesIndex only takes a
species name as its argument and does not depend on any chemical mechanism or any
particular experiment. Two variables have to be passed to the module (will do internal
initialization) for the function to work properly:

• num species: total number of species used in the experiment

• const labels: list of all species names used in the experiment.

Remark 8 The module gets its information at run time but not at compilation time. This
allows us to take into account tracer runs without making any specific provision in the code.

We substituted old namelist variables (using species indices) with new ones. In the
namelist file, we only need to provide the list of species names we are interested in and the
code will figure out (using getSpeciesIndex) what indices they correspond to.

In Table D.1, we provide the list of the new namelist variables and the corresponding
old ones. It is important to note that the old namelist variables remain part of the code (as
regular variables) and are still used for calculations. The newly created variables are only
local variables utilized to set the ones they replace in the namelist file.

Old Namelist variables New Namelist Variables

nlGmiSpeciesConcentration SECTION

58

D.1. From Species Indices to Species Names

fixed const map(1:n) fixedConcentrationSpeciesNames

nlGmiDiagnostics SECTION

pr const rec flag(1:n) concentrationSpeciesNames
pr emiss rec flag(1:n) surfEmissSpeciesNames
pr drydep rec flag(1:n) dryDepSpeciesNames
pr wetdep rec flag(1:n) wetDepSpeciesNames
pr tend rec flag(1:n) tendSpeciesNames
flux species(1:n) fluxSpeciesNames
ifreq# species(1:n) (# = 1, 2, 3, 4) freq#SpeciesNames
species overpass#(1:n) (# = 1, 2) overpass#SpeciesNames
noon species(1:n) noonSpeciesNames
local species(1:n) localSpeciesNames
col diag species(1:n) colDiagSpeciesNames

nlGmiAdvection SECTION

advec flag(1:n) advectedSpeciesNames

nlGmiEmission SECTION

emiss map(1:n) emissionSpeciesNames
emiss map aero(1:n) emissionAeroSpeciesNames
emiss map dust(1:n) emissionDustSpeciesNames

nlGmiChemistry SECTION

forc bc map(1:n) forcedBcSpeciesNames

Table D.1: New namelist variables (and corresponding old
ones) used to set species names instead of species indices in
the namelist file.

We adopted the following principles for the new namelist variables:

1. For a given variable, the number of species names entered is no longer necessary.

2. Each variable is a long string that starts and ends with a single quote. Species names
are separated with commas:
wetDepSpeciesNames = ’H2O2, HNO3, MP, N2O5’,

3. In the previous version of the code, emiss map was set in the namelist file to determine
the number of species in the emission input file and to select the species to be read in
from the file. In the new setting, if a species is not read in, the name to be included
in emissionSpeciesNames is xxx. The function will return -1 for the species index.

4. The order for entering the names is not important for diagnostics-related variables.
However it is relevant for variables (fixedConcentratinSpeciesNames, emission-

SpeciesNames, emissionDustSpeciesNames, emissionAeroSpeciesNames, forced-

BcSpeciesNames) used to read in files.

GMI User’s Guide 59

Chapter D. Important Features

5. Entering species names is not case sensitive. For example, the names HNO3, hNO3,

HnO3, HNo3, hnO3, hNo3, Hno3, hno3 correspond to the same species. Users can
select any of these names to refer to HNO3.

6. If a species names does not exist, the code will abort.

Remark 9 In previous versions of the GMI code, it was assumed that if a set of species
is selected for constituent, wet deposition, dry deposition, and tendency output, the first
species in the mechanism will be included by default. In this work, we did not make such
an arrangement. Only the species provided by the user are considered for output.

Here is an example of namelist setting for the AURA (combo, 124 species, no ship
emission) experiments:

dryDepSpeciesNames = ’CH2O, H2O2, HNO3, MP, N2O5, NO2, O3, PAN, PMN, PPN, R4N2’,

wetDepSpeciesNames = ’H2O2, HNO3, MP, N2O5’,

surfEmissSpeciesNames = ’CH2O, CO, NO, ALK4, C2H6, C3H8, ISOP, MEK, PRPE’,

fluxSpeciesNames = ’CH2O, CH4, CO, HNO3, H2O2, MP, NO, NO2, N2O5, O3, PAN,

SYNOZ’,

freq1SpeciesNames = ’CH4, CO, HNO3, N2O, O3, OH, ClO, Cl2O2, ClONO2, HCl, CFCl3,

CF2Cl2’,

overpass1SpeciesNames = ’CH2O, CO, NO, NO2, O3, OH’,

colDiagSpeciesNames = ’CH2O, CO, HNO2, HNO3, HNO4, H2O, HO2, H2O2, NO, NO2, NO3,

N2O5, O3, OH, ALD2, ALK4, C2H6, C3H8, ISOP, PAN, PRPE, ACET’,

tendSpeciesNames = ’CH2O, CH4, CO, HNO3, H2O2, MP, NO, NO2, N2O5, O3, PAN, SYNOZ’,

advectedSpeciesNames = ’CH2O, CH4, CO, H2, HCOOH, HNO2, HNO3, HNO4, H2O2, MOH, MP,

N2O, NO, NO2, NO3, N2O5, O3, Br, BrCl, BrO, BrONO2, HBr, HOBr, Cl, Cl2, ClO, Cl2O2,

ClONO2 HCl, HOCl, OClO, CH3Br, CH3Cl, CH3CCl3, CCl4, CFCl3, CF2Cl2, CFC113, CFC114,

CFC115, HCFC22, HCFC141b, HCFC142b, CF2Br2, CF2ClBr, CF3Br, H2402, ACTA, ALD2, ALK4,

C2H6, C3H8, ETP, HAC, IALD, IAP, ISOP, MACR, MEK, MVK, PAN, PMN, PRPE, R4N2, RCHO,

RCOOH, DEHYD, SYNOZ’,

emissionSpeciesNames = ’xxx, xxx, NO, NO, NO, NO, NO, CO, CO, CO, MEK, MEK, MEK, PRPE,

PRPE, PRPE, C2H6, C2H6, C2H6, C3H8, C3H8, C3H8, ALK4, ALK4, ALK4, ALD2, ALD2, CH2O,

CH2O, xxx, xxx, xxx, xxx, xxx, xxx’,

forcedBcSpeciesNames = ’CFCl3, CF2Cl2, CFC113, CFC114, CFC115, CCl4, CH3CCl3 HCFC22,

HCFC141b, HCFC142b, CF2ClBr, CF2Br2, CF3Br, H2402, CH3Br, CH3Cl, CH4, N2O’,

Remark 10 The setting of each namelist variable can be done on a single line or on several
lines. In case many lines are used, it is important to begin each line on the first or second
column to avoid any problem.

60 GMI User’s Guide

D.2. Station Diagnostics

D.2 Station Diagnostics

In previous versions of the code, when we wanted to do station diagnostics we needed to
set in the namelist file three variables :

col diag num: total number of stations

col diag site: complete list of stations

col diag lat lon: locations (latitute/longitude) of stations.

Users were required not only to count the number of stations (can be several hundreds)
but also to match the name of each station with its location. Removing/adding one station
from the list involved the resetting of the above three variables with the possibility of
mismatching. To facilitate the selection of stations, we :

• Constructed a file containing a list of all the identified stations and their locations. A
namelist variable was created to point to the file. New stations can be added to the
file at any time. The order of writting station information is irrelevant.

• Added a new namelist variable (long string) to enter the list of selected stations.

• Made changes in the code to check if each selected station exists in the file and then
extract its location.

• Computed the number of selected stations at run time.

We created two new namelist variables (see Table D.2).

Old Namelist variables New Namelist Variables

nlGmiDiagnostics SECTION

col diag num N/A
col diag site() colDiagStationsNames
col diag lat lon(2,n) N/A
N/A stationsInputFileName

Table D.2: New namelist variables for station diagnostics.

The piece of code used to carry out the above operations is:

! Construct the list of station using the long string

call constructListNames(col_diag_site, colDiagStationsNames)

col_diag_num = Count (col_diag_site(:) /= ’’)

if (col_diag_num /= 0) then

GMI User’s Guide 61

Chapter D. Important Features

do ic = 1, col_diag_num

! For each station in the list, check if it exists in the file

! and get its position (lat/lon)

call getStationPosition(col_diag_site(ic), &

col_diag_lat_lon(1,ic), &

col_diag_lat_lon(2,ic), &

stationsInputFileName)

end do

.

.

.

end if

We present below a sample namelist setting for colDiagStationsNames and the first few
lines of the file (colDiagStationList.asc) containing station information.

colDiagStationsNames = ’SPO, MCM, HBA, FOR, NEU, SYO, PSA, MAR, MAQ,

TDF, CRZ, LAU, CGO, ASP, CPT, EIC, JOH, REU, NAM, FIJ, TAH, CUI, SMO,

PNA, WAT, ASC, NAT, SEY, BRA, MAL, NAI, SNC, CHR, KCO, PAR, TVD, PAN,

VEN, RPB, GMI, POO, KUM, MLO, GTK, HON, TAI, ASK’,

--

Station name Lat Lon Description

--

SPO -89.98 335.20

MCM -77.83 166.60

HBA -75.56 333.50

FOR -71.00 12.00

NEU -71.00 352.00

SYO -69.00 39.58

PSA -64.92 296.00

Remark 11 While editing the file containing the station information, the following rules
apply:

1. The first three lines of the file should start with the # character.

2. Column 1 to Column 16 are for the station name.

3. Column 17 to Column 25 are for the latitude of the station.

4. Column 26 to Column 34 are for the longitude of the station.

5. The remaining columns are reserved to describe stations and are not read in.

62 GMI User’s Guide

D.3. Frequency Diagnostics

D.3 Frequency Diagnostics

With the Freq files, users can select the variables they desire to output at any frequency:

1. const (only for selected species; written out if freq#SpeciesNames is set)

2. constSurface (only for selected species; written out if freq#SpeciesNames and pr const surface freq#
are set)

3. constColTrop (only for selected species; written out if freq#SpeciesNames and pr const column freq#
are selected only when using troposphere or combo mechanism)

4. constColCombo (only for selected species; written out if freq#SpeciesNames and pr const column freq#
are selected only when using the combo mechanism)

5. kel (written out if pr kel freq#=T)

6. psf (written out if pr psf freq#=T)

7. metwater (written out if pr metwater freq#=T)

8. mass (written out if pr mass freq#=T)

9. relHumidity (written out if pr rel hum freq#=T)

10. overheadO3Column (written out if pr overheadO3col freq#=T)

11. tropopausePressure (written out if pr tropopausePress freq#=T)

12. potentialVorticity (written out if pr potentialVorticity freq#=T)

Here # is 1, 2, 3 or 4.

There are other Freq related namelist variables that are of interest:

freq#_description: short description of the file

freq#_name : name of the Freq file

pr_nc_freq# : frequency for the outputs

Selected range of vertical levels

k1_freq# : lowest level to output

k2_freq# : highest level to output

Selected horizontal domain for output

lonRange_freq#(1): west longitude between 0 and 360

lonRange_freq#(2): east longitude between 0 and 360

latRange_freq#(1): south latitude between -90 and 90

latRange_freq#(2): north latitude between -90 and 90

GMI User’s Guide 63

Chapter D. Important Features

D.4 Overpass Diagnostics

Users can select a range of time for which they wish to save out selected variables and
to write them in the file, <problem name>.overpass#.nc (where # is 1, 2, 3 or 4). The
variables are:

1. const (only for selected species; written out if overpass#SpeciesNames is set)

2. kel (written out if do mean=T, and pr kel overpass#=T)

3. psf (written out if do mean=T, and pr psf overpass#=T)

4. metwater (written out if do mean=T, and pr metwater overpass#=T)

5. qj (written out if do mean=T, and pr qj overpass#=T)

6. qqj (written out if do mean=T, and pr qqjk overpass#=T)

7. qqk (written out if do mean=T, and pr qqjk overpass#=T)

Four new namelist variables were added

pr overpass# : if set to true, the overpass output file is produced. The file will still be
created if any of the above conditions (namelist setting) is satistfied.

begTime overpass# : begin time.

endTime overpass# : end time.

pr overpass# period days : overpass variable output period.

A sample namelist setting looks like (in the nlGmiDiagnostics section):

do_mean = T,

pr_overpass1 = T,

overpass1SpeciesNames = ’CH2O, CO, NO, NO2, O3, OH’,

begTime_overpass1 = 7.0d0,

begTime_overpass1 = 16.0d0,

pr_overpass1_period_days = -1.0d0,

In the above namelist setting, pr overpass1 = T. Therefore the file<problem name>.overpass1.nc
will be created. It will contain information (between 7am and 4pm) of the variables
const overpass, kel overpass, and psf overpass (the namelist variables pr const overpass1,
pr kel overpass1, and pr psf overpass1 will automatically be set to true). One can obtain the
mean values of the variables metwater overpass, qj overpass, qqj overpass and qqk overpass
by setting the namelist variables pr metwater overpass1, pr qj overpass1, pr qqj overpass1,
and pr qqk overpass1, respectively, to true. It is important to note the following:

1. We have assumed that do mean=T in order to be able to produce the overpass vari-
ables.

64 GMI User’s Guide

D.5. Choice of Vertical Levels

2. If pr overpass1 is not set at all in namelist file, the code will automatically set it to
true if overpass1SpeciesNames has at least one species.

3. If pr overpass1 is set to false in the namelist file, then the file<problem name>.overpass1.nc
will not be created at all, regardless of the setting of the other variables.

D.5 Choice of Vertical Levels

All 3D variables are currently saved out on all vertical levels by default. However the user
may only want to carry out post-processing analyses over a specific range of levels. At run
time, the user can set the following namelist variables to select the range of vertical levels
to output (this does not apply to the freq#, overpass#, and restart files):

pr level all : if set to T, all the vertical levels are considered, otherwise a range (selected
in the next two variables) is used.

k1r gl : First global altitude index for output. Should be at least equal to k1 gl.

k2r gl : Last global altitude index for output. Should be at most equal to k2 gl.

A sample namelist setting looks like (in the nlGmiControl section):

pr_level_all = F,

k1r_gl = 3,

k2r_gl = 20,

When k1r gl and k2r gl are set, they apply to all the netCDF output files except the
restart file.

GMI User’s Guide 65

Appendix E

List of Species

We provide the list of the species used in the GMI code for the aerosol (A), GOCART aerosol
(GA), micro aerosol (MA), stratosphere (S), troposphere (T), and combo (C) chemical
mechanisms.

--------------|---------|---|--------------

Short Name | Unit | Long Name | Mechanism

--------------|---------|---|--------------

ad | mol/mol | | A/GA/MA

A3O2 | mol/mol | Primary RO2 (C3H7O2) from propane | C/T

ACET | mol/mol | Acetone | C/T

ACTA | mol/mol | Acetic acid (C2H4O2) | C/T

ALD2 | mol/mol | Acetaldehyde (C2H4O) | C/T

ALK4 | mol/mol | C4,5 alkanes (C4H10) | C/T

ATO2 | mol/mol | RO2 from acetone (C3H6O3) | C/T

B3O2 | mol/mol | Secondary RO2 (C3H7O2) from propane | C/T

Br | mol/mol | Ground state atomic bromine (2P3/2) | C/S

BrCl | mol/mol | Bromine chloride | C/S

BrO | mol/mol | Bromine monoxide radical | C/S

BrONO2 | mol/mol | Bromine nitrate | C/S

nOC | mol/mol | | A/GA/MA

fOC | mol/mol | | A/GA/MA

fBC | mol/mol | | A/GA/MA

bOC | mol/mol | | A/GA/MA

bBC | mol/mol | | A/GA/MA

CF2Br2 | mol/mol | Halon 1202 | C/S

CF2ClBr | mol/mol | Halon 1211 | C/S

CF3Br | mol/mol | Halon 1301 | C/S

CFC113 | mol/mol | CFC113 (C2Cl3F3) | C/S

CFC114 | mol/mol | CFC114 (C2Cl2F4) | C/S

CFC115 | mol/mol | CFC115 (C2ClF5) | C/S

C2H6 | mol/mol | Ethane | C/T

C3H8 | mol/mol | Propane | C/T

CCl4 | mol/mol | Carbon tetrachloride | C/S

CFCl3 | mol/mol | CFC11 (CFCl3) | C/S

CF2Cl2 | mol/mol | CFC12 (CF2Cl2) | C/S

CH2O | mol/mol | Formaldehyde | C/T/S

66

CH3Br | mol/mol | Methyl bromide | C/S

CH3CCl3 | mol/mol | Methyl chloroform | C/S

CH3Cl | mol/mol | Methyl chloride | C/S

CH4 | mol/mol | Methane | C/T/S

Cl | mol/mol | Ground state atomic chlorine (2P3/2) | C/S

Cl2 | mol/mol | Molecular chlorine | C/S

ClO | mol/mol | Chlorine monoxide radical | C/S

Cl2O2 | mol/mol | Chlorine peroxide | C/S

ClONO2 | mol/mol | Chlorine nitrate | C

CO | mol/mol | Carbon monoxide | C/T/S

fDMS | mol/mol | | A/GA/MA

dust1 | mol/mol | | A/GA/MA

dust2 | mol/mol | | A/GA/MA

dust3 | mol/mol | | A/GA/MA

dust4 | mol/mol | | A/GA/MA

dust5 | mol/mol | | GA

EOH | mol/mol | Ethanol | C/T

ETO2 | mol/mol | Ethylperoxy radical (C2H5O2) | C/T

ETP | mol/mol | Ethylhydroperoxide | C/T

GCO3 | mol/mol | Hydroxy peroxyacetyl radical (C2H3O4) | C/T

GLYC | mol/mol | Glycoaldehyde (Hydroxyacetaldehyde C2H4O2) | C/T

GLYX | mol/mol | Glyoxal (2CHO) | C/T

GP | mol/mol | Peroxide (C2H4O4) from GCO3 | C/T

GPAN | mol/mol | Peroxyacylnitrate (C2H3O6) | C/T

H | mol/mol | Ground state atomic hydrogen (2S) | C/S

H2 | mol/mol | Molecular hydrogen | C/T/S

H2402 | mol/mol | Halon 24O2 (C2Br2F4) | C/S

H2O | mol/mol | Water | T

H2O2 | mol/mol | Hydrogen peroxide | C/T/S/A/GA/MA

H2OCOND | mol/mol | Condensed water | C

HNO3COND | mol/mol | Condensed nitric acid | C

HAC | mol/mol | Hydroxyacetone (C3H6O2) | C/T/S

HBr | mol/mol | Hydrogen bromide | C/S

HCFC22 | mol/mol | HCFC22 (CClF2H) | C/S

HCFC141b | mol/mol | HCFC141b (C2Cl2FH3) | C/S

HCFC142b | mol/mol | HCFC142b (C2ClF2H3) | C/S

HCl | mol/mol | Hydrochloric acid | C/S

HCOOH | mol/mol | Formic acid (CH3O2) | C/T

HNO2 | mol/mol | Nitrous acid | C/T

HNO3 | mol/mol | Nitric acid | C/T/S

HNO4 | mol/mol | Pernitric acid | C/T

HO2 | mol/mol | Perhydroxyl radical | C/T/S/A/GA/MA

HO2NO2 | mol/mol | | S

HOBr | mol/mol | Hypobromous acid | C/S

HOCl | mol/mol | Hypochlorous acid | C/S

IALD | mol/mol | Hydroxy carbonyl alkenes (C5H8O2) from isoprene | C/T

IAO2 | mol/mol | RO2 (C5H9O8) from isoprene oxidation products | C/T

IAP | mol/mol | Peroxide (C5H10O5) from IAO2 | C/T

INO2 | mol/mol | RO2 (C5H8O3N) from ISOP+NO3 | C/T

INPN | mol/mol | Peroxide (C5H8O6N2) from INO2 | C/T

ISN1 | mol/mol | RO2 (C4H7O4N) from ISN2 | C/T

GMI User’s Guide 67

Chapter E. List of Species

ISNP | mol/mol | Peroxide (C4H7O4N) from ISN1 | C/T

ISOP | mol/mol | Isoprene | C/T

KO2 | mol/mol | RO2 (C4H7O3) from C3 ketones | C/T

MACR | mol/mol | Methacrolein (C4H6O) | C/T

MAN2 | mol/mol | RO2 (C4H6O6N) from MACR+NO3 | C/T

MAO3 | mol/mol | Peroxyacyl (C4H5O3) from MVK+MACR | C/T

MAOP | mol/mol | Peroxide (C4H6O3) from MAO3 | C/T

MAP | mol/mol | Peroxyacetic acid (C2H4O3) | C/T

MCO3 | mol/mol | Peroxyacetyl radical (C2H3O3) | C/T

MEK | mol/mol | Methyl ethyl ketone (C4H8O) | C/T

MGLY | mol/mol | Methylglyoxal (C3H4O2) | C/T

MO2 | mol/mol | Methylperoxy radical (CH3O2) | C/T/S

MOH | mol/mol | Methanol | C/T

MP | mol/mol | Methyl hydroperoxide | C/T

MRO2 | mol/mol | RO2 (C4H7O4) from MACR+OH | C/T

MRP | mol/mol | Peroxide (C4H8O4) from MRO2 | C/T

MVK | mol/mol | Methyl vinyl ketone (C4H6O) | C/T

MVN2 | mol/mol | C4H6O4N | C/T

N | mol/mol | Ground state atomic nitrogen | C/S

N2 | m^-3 | Molecular nitrogen | C/S

N2O | mol/mol | Nitrous oxide | C/S

N2O5 | mol/mol | Dinitrogen pentoxide | C/T

NO | mol/mol | Nitric oxide | C/T/S

NO2 | mol/mol | Nitrogen dioxide | C/T/S

NO3 | mol/mol | Nitrogen trixide | C/T/S/A/GA/MA

O | mol/mol | Ground state atomic oxygen (3P) | C/S

O1D | mol/mol | First excited state of atomic oxygen (1D) | C/S

O2 | m^-3 | Molecular oxygen | C/S

O3 | mol/mol | Ozone | C/T/S/A/GA/MA

OClO | mol/mol | Symmetrical chlorine dioxide | C/S

OH | mol/mol | Hydroxyl radical | C/T/S/A/GA/MA

PAN | mol/mol | Peroxyacetyl nitrate (C2H3NO5) | C/T

PMN | mol/mol | Peroxymethacryloyl nitrate (C4H5O5N) | C/T

PO2 | mol/mol | RO2 (C3H7O3) from propene | C/T

PP | mol/mol | Peroxide (C3H8O3) from PO2 | C/T

PPN | mol/mol | Prexypropionyl nitrate (C3H5O5N) | C/T

PRN1 | mol/mol | RO2 (C3H5O5N) from propene+NO3 | C/T

PRPE | mol/mol | Propene (C3H6) | C/T

PRPN | mol/mol | Peroxide (C3H6O3N) from PRN1 | C/T

R4N1 | mol/mol | RO2 (C4H9O3N) from R4N2 | C/T

R4O2 | mol/mol | RO2 (C4H9O2) from ALK4 | C/T

R4P | mol/mol | Peroxide (C4H10O2) from R4O2 | C/T

R4N2 | mol/mol | C4-C5 alkylnitrates (C4H9O3N) | C/T

RA3P | mol/mol | Peroxypropyl alcohol (C3H8O2) from A3O2 | C/T

RB3P | mol/mol | Peroxide from B3O2 | C/T

RCHO | mol/mol | C2 aldehydes (C3H6O) | C/T

RCOOH | mol/mol | C2 organic acids | C/T

RCO3 | mol/mol | Peroxypropionyl radical (C3H5O3) | C/T

RIO1 | mol/mol | RO2 (C5H9O3) from isoprene oxidation products | C/T

RIO2 | mol/mol | RO2 (C5H9O3) from isoprene | C/T

RIP | mol/mol | Peroxide (C5H10O3) from RIO2 | C/T

68 GMI User’s Guide

ROH | mol/mol | C2 alcohols | C/T

RP | mol/mol | Methacrolein peroxy acid (C4H6O3) | C/T

sslt1 | mol/mol | | A/GA/MA

sslt2 | mol/mol | | A/GA/MA

sslt3 | mol/mol | | A/GA/MA

sslt4 | mol/mol | | A/GA/MA

fSO2 | mol/mol | | A/GA/MA

nSO2 | mol/mol | | A/GA/MA

fSO4a | mol/mol | | A/GA

fSO4n1 | mol/mol | | A/GA

fSO4n2 | mol/mol | | A/GA

fSO4n3 | mol/mol | | A/GA

nSO4a | mol/mol | | A/GA

nSO4n1 | mol/mol | | A/GA

nSO4n2 | mol/mol | | A/GA

nSO4n3 | mol/mol | | A/GA

SO4g | mol/mol | | MA

SO4m1 | mol/mol | | MA

SO4n1 | mol/mol | | MA

SO4m2 | mol/mol | | MA

SO4n2 | mol/mol | | MA

SO4nOC | mol/mol | | MA

SO4fOC | mol/mol | | MA

SO4fBC | mol/mol | | MA

SO4bOC | mol/mol | | MA

SO4bBC | mol/mol | | MA

SO4d1 | mol/mol | | MA

SO4d2 | mol/mol | | MA

SO4d3 | mol/mol | | MA

SO4d4 | mol/mol | | MA

SO4s1 | mol/mol | | MA

SO4s2 | mol/mol | | MA

SO4s3 | mol/mol | | MA

SO4s4 | mol/mol | | MA

SYNOZ | mol/mol | Synthetic ozone | C/T

VRO2 | mol/mol | RO2 (C4H7O4) from MVK+OH | C/T

VRP | mol/mol | Peroxide (C4H8O4) from VRO2 | C/T

Total Density | m^-3 | Total | C/T/S

DEHYD | | | C/S

H2OAIR | | | C/S

H2OJETS | mol/mol | Aircraft-emitted water | C

GMI User’s Guide 69

Appendix F

Input Namelist Variables

A model run is controlled using a namelist input file named <problem name>.in. The focus
of this section is to describe the variables that constitute the namelist input. We provide
the name of each variable, the default, and a brief description.

70

Variable Name Type Default Value Description

nlGmiControl SECTION

problem name C*128 ’gmi test’ The name of the problem to be run.
do ftiming L F Do fine timing?
Processor distribution:
oneProcRun L F Is this a one processor run?
numWorkerProcs I 1 Number of worker prossors (numLonProcs * numLatProcs)
numLonProcs I 1 Number of processors in the i direction (longitude).
numLatProcs I 1 Number of processors in the j direction (latitude).
Global dimension info:
gmi nborder I 4 Number of longitude and latitude ghost zones.
i1 gl I 1 Index of first global longitude (no ghost zones).
i2 gl I 72 Index of last global longitude (no ghost zones).
ju1 gl I 0 Index of first global ”u” latitude (no ghost zones).
jv1 gl I 1 Index of first global ”v” latitude (no ghost zones).
j2 gl I 46 Index of last global ”u&v” latitude (no ghost zones).
k1 gl I 1 Index of first global altitude (no ghost zones).
k2 gl I 29 Index of last global altitude (no ghost zones).
num species I 1 Number of species.
Time:
leap year flag I 0 Leap year flag:

< 0: no year is a leap year
= 0: leap years are determined normally
> 0: every year is a leap year

begGmiTime I 000000 Beginning hour/min/sec (HHMMSS).
begGmiDate I 19890101 Beginning year/month/day (YYYYMMDD).
endGmiTime I 010000 Ending hour/min/sec (HHMMSS).
endGmiDate I 19890101 Ending year/month/day (YYYYMMDD).
gmi sec R 0.0 Total GMI seconds (s).
tdt R 180.0 Model time step (s).
Main transport option:
trans opt I 1 Transport option:

1: do LLNLTRANS transport

G
M

I
U

se
r’s

G
u
id

e
7
1

C
h
a
p
te

r
F

.
In

p
u
t

N
a
m

e
list

V
a
ria

b
le

s

2: do UCITRANS transport (non-parallel mode)

nlGmiMetFields SECTION

General input data:
gmi data dir C*80 ’ ’ Directory where input files are located.
Met data:
met opt I 3 Met input option:

1: use values fixed in code for u, v, ps, kel; no other data set
2: read in a minimal set of met data: u, v, ps, & kel; no other data set
3: read in a full set of met data.

met grid type C ’A’ Met grid type:
’A’: use A grid (DAO, NCAR(CCM))
’C’: use C grid (GISS)

mdt R 21600.0 Time increment for reading new met data; must be a multiple of tdt (s).
do cycle met L F When the last met input file has been read, should the code cycle back

and continue with the first file again?
do timinterp met L T Should the met fields, except the winds, be timeinterpolated?
do timinterp winds L T Should the wind fields be time interpolated? Note

that pressure fields are always interpolated.
do wind pole L F When met opt = 1, should the transport be over

the poles or around the equator?
met infile num I 1 Index of NetCDF file to start reading met input data from.
mrnum in I 1 NetCDF file record to start reading met data from.
tmet1 R 0.0 Time tag of the mrnum in (s).
do read met list L F Should the met file names be read in from met filnam list?
met filnam list C*80 ’met filnam list.in’ Name of file to get names of met input files from. Note that currently

this file must reside in the same directory that you are running the
gmi executable from.

met infile names() C*128 ’ ’ An array of met input file names (list may be used instead).
gwet opt I 0 Option for choosing which gwet variable to read (for GEOS4)

0: Read gwet1
1: Read gwettop

nlGmiSpeciesConcentration SECTION

Base species concentration units = mixing ratio
const opt I 2 Const input option:

7
2

G
M

I
U

se
r’s

G
u
id

e

1: set const values to const init val
2: read in const values
3: solid body rotation
4: dummy test pattern with linear slope in each

dimension
5: exponential in vertical (decays with height)
6: sin in latitude (largest at equator)
7: linear vertical gradient
8: sin in latitude (largest at equator) +

vertical gradient
mw() R 0.0 Array of species’ molecular weights (g/mol).
const init val() R 1.0d-30 When const opt = 1, this array of values will be used to initialize each

const species (note that if a negative const init val() marker is set in the
namelist input file, all of the const init val’s from negative value on
will be set to the value preceding the negative value).

const infile name C*128 ’ ’ Constituent input file name.
const var name C*32 ’const’ NetCDF constituent variable name.
const labels() C*24 ’ ’ Constituent string labels.
fixed const timpyr I 12 Fixed const times per year:

1: one set of emissions per year (yearly)
12: twelve sets of emissions per year (monthly)

fixedConcentrationSpeciesNames C* ” List of fixed species concentration names as long string.
fixed const infile name C*128 ’ ’ Fixed const input file name.
io3 num I 0 Index of ozone constituent.

nlGmiDiagnostics SECTION

ASCII output:
Terminal screen output:
pr diag L F Print some diagnostic output to screen?
pr time L T Should the time be printed to the terminal screen each time step

(if false, will still get time output to the screen at the end of each day)?
Namelist file output:
pr nl L F Should all the namelist variables be written to the file problem name.nl?
Species/Mass ASCII file output:
pr ascii L T Should the ASCII output file be written at all?
pr ascii1 L T Should the first section of the ASCII output

G
M

I
U

se
r’s

G
u
id

e
7
3

C
h
a
p
te

r
F

.
In

p
u
t

N
a
m

e
list

V
a
ria

b
le

s

file be written (the mass data)?
pr ascii2 L F Should the second section of the ASCII output

file be written (the species concentration data)?
pr ascii3 L T Should the third section of the ASCII output file

be written (the species concentration min/maxs)?
pr ascii4 L F Should the fourth section of the ASCII output file

be written (total mass of each species)?
pr ascii5 L F Should the fifth section of the ASCII output file be

written (total production and loss of each species)?
ascii out n I 1 Single species index to use.
ascii out i I 1 Longitude index to use in the second section.
pr ascii step interval I 1 Interval for ASCII output:

> 0: ASCII output at specified step interval
= −1: ASCII output at monthly intervals

SmvgearII file output:
pr smv2 L F Should the SmvgearII output file be written (non-parallel mode only)?
General NetCDF output:
pr netcdf L T Should any of the periodic output files be written at all?
hdr var name C*32 ’hdr’ NetCDF header variable name.
hdf dim name C*32 ’hdf dim’ NetCDF header dimension name.
lat dim name C*32 ’latitude dim’ NetCDF latitude dimension name.
lon dim name C*32 ’longitude dim’ NetCDF longitude dimension name.
prs dim name C*32 ’pressure dim’ NetCDF pressure dimension name.
spc dim name C*32 ’species dim’ NetCDF species dimension name.
rec dim name C*32 ’rec dim’ NetCDF record dimension name.
tim dim name C*32 ’time dim’ NetCDF time dimension name.
pr level all L T Should output be done on all the vertical levels?

If pr level all=F, then set k1r gl and k2r gl
k1r gl I 1 First altitude index for output (k1r gl ≥ k1 gl).
k2r gl I 29 Last altitude index for output (k2r gl ≤ k2 gl).
pr const L T Should the periodic species concentrations output file be written?
pr psf L F Should the surface pressures be written to the periodic const output file?
pr kel L F Should the temperatures be written to the periodic const output file?
pr mass L F Should the mass be written to the periodic const output file?

7
4

G
M

I
U

se
r’s

G
u
id

e

pr grid height L F Should the grid box height be written to the periodic const output file?
pr relHumidity L F Should the rel humidity be written to the periodic const output file?
pr metwater L F Should the meteorological water be

written to the periodic const output file?
pr dry depos L F Should the dry depositions be written to

the periodic const output file?
pr wet depos L F Should the wet depositions be written to

the periodic const output file?
pr surf emiss L F Should the surface emissions be written to

the periodic const output file?
pr overheadO3col L F Should overhead ozone column be written out?
pr tropopausePress L F Should tropopause pressure be written out?
pr potentialVorticity L F Should potential vorticity be written out?
pr qj L F Should the periodic qj output file be written?
pr qj o3 o1d L F Should the special reaction O3→O1D be saved with the qj’s?
pr qj opt depth L F Should the optical depth be saved with the qj’s?
pr qk L F Should the periodic qk output file be written?
pr qqjk L F Should the periodic qqjk output file be written?
pr sad L F Should the periodic sad output file be written?
pr cloud L F Should cloud related variables be written (for GT module)?
pr tend L F Should the periodic tendency diagnostics output file be written?
pr const all L T Should all of the species concentrations be

written to the periodic const output file?
pr emiss 3d L F Should 2d emissions be written to the periodic const output file?
pr AerDust L F Should the periodic aerosol/dust diagnostics be written?
do aerocom L F Should aerocom calculations be performed?
do dust emiss L F

> 0.0: periodic output at specified interval (days)
−1.0: periodic output at monthly intervals
−2.0: periodic output on 1st & 15th of each month

do mean L F Should means or current values be put in the periodic output files?
do qqjk inchem L F If pr qqjk is on, should qqj’s & qqk’s be determined inside the chemistry

outside?
concentrationSpeciesNames C* ” List of species names for species concentration diagnostic as a long string.

G
M

I
U

se
r’s

G
u
id

e
7
5

C
h
a
p
te

r
F

.
In

p
u
t

N
a
m

e
list

V
a
ria

b
le

s

Note that concentrationSpeciesNames is only used if pr const all is false.
Note that concentrationSpeciesNames is also used to determine the
species written to dry depos and wet depos.

pr nc period days R 1.0 NetCDF output period:
> 0.0: periodic output at specified interval (days)
−1.0: periodic output at monthly intervals
−2.0: periodic output on 1st & 15th of each month

pr emiss all L T Should all the surface emissions be written to the
periodic const output file? If set to F and
pr surf emiss=T, then specify surfEmissionSpeciesNames.

surfEmissionSpeciesNames C* ” List of species names for surface emission diagnostic as a long string.
pr drydep all L T Should all the dry depositions be written to the periodic const output

file? If set to F and pr dry depos=T, then specify dryDepSpeciesNames.
dryDepSpeciesNames C* ” List of species names for dry dep diagnostic as a long string.
pr wetdep all L T Should all the wet depositions be written to the

periodic const output file? If set to F and
pr wet depos=T, then specify wetDepSpeciesNames.

wetDepSpeciesNames C* ” List of species names for wet dep diagnostic as a long string.
pr tend all L T Should periodic tendency diagnostics output file

be written for all the species? If set to F and
pr tend=T, then specify tendSpeciesNames.

tendSpeciesNames C* ” List of species names for tendencies diagnostic as a long string.
Flux Diagnostics:

pr flux L F Should the periodic flux diagnostics file be written?
fluxSpeciesNames(1:n) C*16 ” List of species names used for flux diagnostics.
pr const flux L T Should the periodic species concentrations output file be written?
pr psf flux L F Should the surface pressure be written outin the flux file?
flux name C*8 ’mf’ NetCDF flux variable name.
pr nc period flux R 1.0 flux output period:

> 0.0: periodic output at specified interval (days)
−1.0: periodic output at monthly intervals
−2.0: periodic output on 1st & 15th of each month

Overpass Output (# is 1, or 2):

pr overpass# L F Should the periodic overpass# output file be written?
overpass#SpeciesNames C* ” List species names for overpass# diagnostics as a long string.

7
6

G
M

I
U

se
r’s

G
u
id

e

pr const overpass# L F Should the periodic species conc. be written for user defined species?
pr psf overpass# L F Should surface pressure be written out?
pr kel overpass# L F Should temperature be written out?
pr qj overpass# L F Should photolysis rates be written out?
pr qqjk overpass# L F Should photolysis rate constants be written out?
pr metwater overpass# L F Should metwater be written out?
pr totalMass overpass# L F Should mass be written out?
pr relHumidity overpass# L F Should relative humidity be written out?
pr gridBoxHeight overpass# L F Should grid box height be written out?
pr cloudOptDepth overpass# L F Should cloud optical depth be written out?
pr tropopausePress overpass# L F Should tropopause pressure be written out?
pr overheadO3col overpass# L F Should overhead ozone column be written out?
begTime overpass# R 11.0 Beginning time for overpass#
endTime overpass# R 13.0 Ending time for overpass#
pr overpass# period days R 1.0 overpass netCDF output period:

> 0.0: periodic output at specified interval (days)
−1.0: periodic output at monthly intervals
−2.0: periodic output on 1st & 15th of each month

Frequency Output (# is 1, 2, 3, or 4):

pr const column freq# L F Should the periodic species conc. column file be written?
pr const surface freq# L F Should the periodic surf. species conc. file be written?
k1 freq# I k1 Minimum level for freq# output variables.
k2 freq# I k2 Maximum level for freq# output variables.
do mean freq# L F
do day1 freq# L F
pr freq# L F Should the periodic output file at Frequency # be written?
pr const freq# L F Should the periodic species conc. be written for user defined species?
pr psf freq# L F Should surface pressure be written out?
pr kel freq# L F Should temperature be written out?
pr mass freq# L F Should mass be written out?
pr rel hum freq# L F Should relative humidity be written out?
pr grid height freq# L F Should grid box height be written out?
pr overheadO3col freq# L F Should overhead ozone column be written out?
pr potentialVorticity freq# L F Should potential vorticity be written out?

G
M

I
U

se
r’s

G
u
id

e
7
7

C
h
a
p
te

r
F

.
In

p
u
t

N
a
m

e
list

V
a
ria

b
le

s

pr tropopausePress freq# L F Should tropopause pressure pressure be written out?
pr nc freq# R 1.0
lonRange freq#(1:2) R 0.d0, 360.d0 Selected longitude range for outputs
latRange freq#(1:2) R -90.d0, 900.d0 Selected latitude range for outputs
freq#SpeciesNames C* ” List species names for freq# diagnostics as a long string.
freq# name C*80 ’ ’
freq# description C*80 ’ ’ Description to be included in the header of the nc file.
Column diagnostic NetCDF output:
stationsInputFileName C*128 ” File having a list of all possible stations (with their locations)

for column disgnostics.
col diag period R 3600.0 Column diagnostics output period (s).
colDiagStationsNames C* ’ ’ List of selected stations (as a long string) for column diag.
colDiagSpeciesNames C* ” List of species names for column diagnostics as a long string.
col diag pres(1:10) R 1000.0, ... , 100.0 Pressure levels for column diag. (mb).

nlGmiRestart SECTION

pr restart L F Should a restart file be written?
do overwrt rst L T Should the restart file be over-written?
pr rst period days R 7.0 Restart output period:

> 0.0: restart output at specified interval (days)
−1.0: restart output at monthly intervals
−2.0: restart output on 1st & 15th of each month

rd restart L F Should a restart file be read?
restart infile name C*128 ’gmi.rst.nc’ Name of restart input file; note that currently this file must reside in the

same directory that you are running the gmi executable from.
restart inrec I last record Record number in restart (rst) input file to read from.

in rst file

nlGmiAdvection SECTION

advec opt I 1 Advection option:
0: no advection
1: do DAO2 advection

press fix opt I 1 Pressure fixer option:
0: no pressure fixer used
1: LLNL pressure fixer used (Cameron-Smith)

7
8

G
M

I
U

se
r’s

G
u
id

e

2: UCI pressure fixer used (Prather)
pmet2 opt I 1 pmet2 option:

0: use pmet2
1: use (pmet2 - ”global mean change in surface pressure”)

advec consrv opt I 2 Advection conserve option:
0: conserve tracer conc.; use pmet2
1: conserve tracer mass; use pmet2
2: conserve both tracer conc. & mass; use pctm2

Note that if press fix opt = 0 & advec consrv opt = 2, the code will
generate an error and exit.

advec flag default I 1 Set all species to do advection or not to do advection as the default;
can then use advec flag turn individual species either off,
if the default is on; or on, if the default is off:
0: do not advect any species as default
1: advect all species as default

advectedSpeciesNames C* ” List of advected species names as a long string.
Set advec flag default = 1 to use this variable.

j1p I 3 Determines size of the Polar cap; j2p = j2 gl - j1p + 1
do grav set L F Should gravitational settling of aerosols be done?
do var adv tstp L F Should variable advection time steps be taken as

determined by the Courant condition?

nlGmiConvection SECTION

Base convection units = kg/m2*s
convec opt I 0 Convection option:

0: no convection
1: do DAO2 convection
2: do NCAR convection

nlGmiDeposition SECTION

Base deposition units = m/s
do drydep L F Should dry deposition be done?
do wetdep L F Should wet deposition be done?
do simpledep L F Should simple deposition be done?
num ks sdep I 1 Number of vertical layers to apply 2 day loss

factor to in simple deposition.

G
M

I
U

se
r’s

G
u
id

e
7
9

C
h
a
p
te

r
F

.
In

p
u
t

N
a
m

e
list

V
a
ria

b
le

s

wetdep eff() R 0.0 Wet deposition (scavenging) efficiencies; should be set to values
between 0.0 and 1.0 for each species.

nlGmiDiffusion SECTION

diffu opt I 0 Diffusion option:
0: no diffusion
1: do DAO2 vertical diffusion

vert diffu coef R 0.0 Scalar vertical diffusion coefficient (m2/s).

nlGmiEmission SECTION

Base emissions units = kg/s
emiss opt I 0 Emissions option:

0: no emissions
1: do LLNL emissions only
2: do LLNL + Harvard emissions

emiss in opt I 0 Emissions input option:
0: no emissions data
1: set all emiss values to emiss init val
2: read in emiss values

emiss conv flag I 0 Emissions conversion flag:
0: no conversion performed
1: use scalar emiss conv fac (scalar * kg/s => kg/s)
2: use calculated emissions conversion factor (kg/km2*hr => kg/s)

semiss inchem flag I -1 Surface emissions inside chemistry flag:
< 0: If emissions are on, surface emissions will be done in Smvgear

chemistry if it is on; outside of chemistry if Smvgear chemistry is off.
= 0: If emissions are on, surface emissions will be done outside

of chemistry.
> 0: If emissions are on, surface emissions will be done in Smvgear

chemistry.
emiss timpyr I 1 Emission times per year:

1: one set of emissions per year (yearly)
12: twelve sets of emissions per year (monthly)

emissionSpeciesNames C* ” Ordered list of names of species (as a long string) to be read in from
the emission file. If a species appears in the file but is but is
not read in, it should be labeled ’xxx’.

8
0

G
M

I
U

se
r’s

G
u
id

e

emiss conv fac R 1.0 Emission conversion factor when emiss conv flag = 1.
emiss init val R 1.0 When emiss opt = 1, this value will be used to initialize all

emissions values.
emiss infile name C*128 ’ ’ Emissions input file name.
emiss var name C*32 ’emiss’ NetCDF emission variable name.
doReadDailyEmiss L F Should we read the daily emission file?
begDailyEmissRec I 1 beginning record for daily emission reading
endDailyEmissRec I 1 ending record for daily emission reading
Harvard biogenic & soil emissions:
isop scale() R 1.0d0 Isoprene scaling factors for each month.
Note that if ((emiss opt == 2) && do full chem), the
indices below will be automatically set by the setkin files.
iacetone num I 0 Const array index for acetone (C3H6O) (ACET).
ico num I 0 Const array index for CO.
iisoprene num I 0 Const array index for isoprene (C5H8) (ISOP).
ipropene num I 0 Const array index for propene (C3H6) (PRPE).
ino num I 0 Const array index for NO.
fertscal infile name C*128 ” Fertilizer scale infile name.
lai infile name C*32 ” Leaf area index infile name.
light infile name C*128 ” Light infile name.
precip infile name C*128 ” Precipitation infile name.
soil infile name C*128 ” Soil type infile name.
veg infile name C*128 ” Vegetation type infile name.
isopconv infile name C*128 ” Isoprene conversion infile name.
monotconv infile name C*128 ” Monoterpene conversion infile name.
MEGAN Emissions:
doMEGANemission L F Should we do MEGAN emissions?
laiMEGAN InfileName C*128 ’ ’ AVHRR leaf-area-indices infile name.
aefMboMEGAN InfileName C*128 ’ ’ Annual emission factor for methyl butenol infile name.
aefIsopMEGAN InfileName C*128 ’ ’ Annual emission factor for isoprene infile name.
aefMonotMEGAN InfileName C*128 ’ ’ Annual emission factor for monoterpenes infile name.
aefOvocMEGAN InfileName C*128 ’ ’ Annual emission factor for other biogenic VOCs infile name.
Ship Emission:
do ShipEmission L F Should we do ship emission calculation?

G
M

I
U

se
r’s

G
u
id

e
8
1

C
h
a
p
te

r
F

.
In

p
u
t

N
a
m

e
list

V
a
ria

b
le

s

Galactic Cosmic Ray:
do gcr L F Should Galactic Cosmic Ray source of N and NO be turned on?
gcr infile name C*128 ’ ’ Input file for Galactic Cosmic Ray source parameters
Emission Scaling Factors:
doScaleNOffEmiss L F Should we use fossil fuel scaling factors?
scFactorNOff infile name C*128 ’ ’ Scaling factor for NO fossil fuel emission infile name.
doScaleNObbEmiss L F Should we use biomass burning scaling factors?
scFactorNObb infile name C*128 ’ ’ Scaling factor for biomass burning emission infile name.
Michigan aerosol and dust emissions:
emiss aero opt I 0 aerosol emission option

0: no aerosol emission
1: Michigan aerosol emissions
2: GOCART aerosol emissions

naero I 0 number of aerosol emissions.
emissionAeroSpeciesNames C* ” Ordered list of names of aerosol species (as a long string) to be read in

from the aerosol emission file.
emiss aero infile name C*128 ’ ’ Name of file containing michigan aerosol emissions.
emiss dust opt I 0 0,1; 0 fo no michigan dust emissions.
emiss dust opt I 0 dust emission option

0: no dust emission
1: Michigan dust emissions
2: GOCART dust emissions

ndust I 0 number of dust emissions.
nst dust I 1 number of starting point in time for michigan dust emissions.
nt dust I 1 number of times of dust emissions per michigan dust emissions file.
emissionDustSpeciesNames C* ” Ordered list of names of dust species (as a long string) to be read in

from the dust emission file.
emiss dust infile name C*128 ’ ’ Name of file containing michigan dust emissions.
GOCARTerod infile name C*128 ”
GOCARTocean infile name C*128 ”
GOCARTerod mod infile name C*128 ”

nlGmiChemistry SECTION

chem opt I 0 Chemistry option:
0: no chemistry (age of air, etc.)

8
2

G
M

I
U

se
r’s

G
u
id

e

1: call Radon/Lead chemistry
2: call SmvgearII
3: call simple loss (N2O, etc.)
4: call forcing boundary condition for a tracer (CO2, etc.)
5: call Synoz tracer (if num species=1 then just Synoz,

if num species=2 then Nodoz tracer is species number 2)
6: call Beryllium chemistry
7: call Quadchem
8: call Sulfur chemistry

cloudDroplet I 1 cloud droplet option:
1: Boucher and LohMan Correlation
2: Nenes and Seinfeld Parameterization
3: Abdul-Razzak and Ghan Parameterization
4: Segal amd Khain Correllation

chem cycle R 1.0 Number of time steps to cycle chemistry calls on:
< 1.0: chemistry will subcycle
= 1.0: chemistry called each time step

chem mask klo I k1 gl Lowest grid level at which chemistry is calculated.
chem mask khi I k2 gl Highest grid level at which chemistry is calculated.
loss opt I 0 Stratospheric loss option

0: do not use stratospheric loss
1: use stratospheric loss in gmi step.F

oz eq synoz opt I 0 conversion of syzoz to ozone option
0: no conversion
1: do conversion

synoz threshold R Huge Chemistry turned off where synoz > this
threshold (mixing ratio).

t cloud ice R 263.0 Temperature for cloud ice formation.
do chem grp L F Should chemical groups be used?
do smv reord L F Should the grid boxes be reordered in order of stiffness?
do wetchem L F Should wet chemistry be done?
Aerosol/Dust Calculations
For trop and combo without interactive aerosols and chemistry
AerDust var name C*32 ’ ’ netCDF aerosol/dust variable name
AerDust infile name C*128 ’ ’ aerosol/dust input file name

G
M

I
U

se
r’s

G
u
id

e
8
3

C
h
a
p
te

r
F

.
In

p
u
t

N
a
m

e
list

V
a
ria

b
le

s

do AerDust Calc L F Should you do aerosol/dust calculations?

AerDust Effect opt I 0 Radiative effects or/and heteregeneous chemistry
0: rad. effects on and het. chem. on
1: rad. effects off and het. chem. on
2: rad. effects on and het. chem. off
3: rad. effects off and het. chem. off

Be-7/Be-10 chemistry:
be opt I 1 Beryllium star table option:

1: use Koch table for Be-7 and Be-10
2: use Nagai tables for Be-7 and Be-10

t half be7 R 53.3d0 Half life of Beryllium-7, or other cosmogenic radionuclide (days).
t half be10 R 5.84d8 Half life of Beryllium-10, or other cosmogenic radionuclide (days).
yield be7 R 4.5d-7 Yield factor for Beryllium-7, or other cosmogenic radionuclide (unitless).
yield be10 R 2.5d-7 Yield factor for Beryllium-10, or other cosmogenic radionuclide (unitless).
Base forcing boundary condition units = mixing ratio
forc bc opt I 1 Forcing boundary condition option:

1: set all forc bc values to forc bc init val
2: read in forc bc
3: calculate forc bc

fbc j1 I ju1 gl Forcing boundary condition j1 (low latitude).
fbc j2 I j2 gl Forcing boundary condition j2 (high latitude).
forc bc years I 1 Number of years of forcing data.
forc bc start num I 1 Forcing boundary condition start number; index for year to use.
forc bc kmin I 1 Minumum k level for forcing boundary condition.
forc bc kmax I 1 Maximum k level for forcing boundary condition.
forcedBcSpeciesNames C* ” Ordered list of species names (as a long string) used for forcing

boundary condition.
forc bc init val R 0.0 When forc bc opt = 1, this value will be used to

initialize all forc bc values (ppmv).
forc bc incrpyr R 0.3 Forcing boundary condition emission increase per year.
forc bc lz val R 0.0 Value to which lower zones are forced.
forc bc infile name C*128 ’forc bc co2.asc’ Forcing boundary condition input file name.
Base simple loss units = s−1

loss freq opt I 1 Loss frequency option:

8
4

G
M

I
U

se
r’s

G
u
id

e

1: set all loss freq values to loss init val
2: read in loss data
3: use NCAR loss

kmin loss I k1 gl Minimum vertical index at which loss will occur; currently, below
this altitude a constant boundary condition is enforced using
const init val for all species.

kmax loss I k2 gl Maximum vertical index at which loss will occur.
loss init val R 0.0 When loss freq opt = 1, this value will be used to

initialize all loss freq values.
loss data infile name C*128 ’loss n2o.asc’ Loss data input file name.
Surface Area Density (SAD):
sad opt I 0 Surface area density (SAD) option:

0: do not allocate or process SAD array
1: allocate, but zero out SAD array
2: call Considine code (i.e., Condense)
3: read SAD array from a file of monthly averages

sad var name C*32 ’sad’ NetCDF sad variable name.
sad dim name C*32 ’sad dim’ NetCDF sad dimension name.
h2oclim opt I 2 Water climatology input option:

1: set all h2oclim values to h2oclim init val
2: read in h2oclim

h2oclim timpyr I 12 Water climatology times per year
1: yearly
12: monthly

ch4clim init val R 0.0 When h2oclim opt = 1, this value will be used to initialize all ch4clim
h2oclim init val R 0.0 When h2oclim opt = 1, this value will be used to initialize all h2oclim

values.
h2oclim infile name C*128 ’ ’ Water climatology input file name.
lbssad opt I 2 Liquid binary sulfate input option:

1: set all lbssad values to lbssad init val
2: read in lbssad

lbssad timpyr I 12 Liquid binary sulfate times per year:
1: yearly
12: monthly

lbssad init val R 0.0 When lbssad opt = 1, this value will be used

G
M

I
U

se
r’s

G
u
id

e
8
5

C
h
a
p
te

r
F

.
In

p
u
t

N
a
m

e
list

V
a
ria

b
le

s

to initialize all lbssad values.
lbssad infile name C*128 ’ ’ Liquid binary sulfate input file name.
qk / qqk:
qk var name C*32 ’qk’ NetCDF qk variable name.
qqk var name C*32 ’qqk’ NetCDF qqk variable name.
qk dim name C*32 ’qk dim’ NetCDF qk dimension name.
qqk dim name C*32 ’qqk dim’ NetCDF qqk dimension name.
Reaction rate adjustment:
do rxnr adjust L F Adjust reaction rates?
rxnr adjust infile name C*128 ’ ’ Reaction rate adjustment input file name.
rxnr adjust var name C*32 ’reac rate adj’ NetCDF reaction rate adjustment variable name.

nlGmiPhotolysis SECTION

Base photolysis/qj units = s−1

phot opt I 1 Photolysis option:
0: no photolysis
1: set all qj values to qj init val
2: read in qj values
3: use a version of fastj (to be used with fastj opt)
4: lookup table for qj (Kawa style)
5: lookup table for qj (Kawa style) + use

ozone climatology for column ozone calc.
6: calculate from table and GMI data

(Quadchem)
7: read in qj values (2-D, 12 months)

fastj opt I 0 fastj option (set together with phot opt=3):
0: for fastj
1: for fast JX
2: for fast JX53b
3: for fast JX53c

cross section file C*128 ’ ’ X-Section quantum yield input file name
rate file C*128 ’ ’ Master input file name
T O3 climatology file C*128 ’ ’ T & O3 climatology input file name
scattering data file C*128 ’ ’ Aerosol/cloud scattering data input file name

Only used for fast JX53b and fast JX53c
do ozone inFastJX L F Should ozone columns be computed inside fast JX?

8
6

G
M

I
U

se
r’s

G
u
id

e

By default fast JX uses the model ozone columns.
do clear sky L T Should clear sky photolysis be done?
fastj offset sec R 0.0d0 Offset from model time at which to do fastj (s).
qj init val R 1.0d-30 When phot opt = 1, this value will be used

to initialize all qj values.
qj infile name C*128 ’ ’ qj input file name.
qj var name C*32 ’qj’ NetCDF qj variable name.
qqj var name C*32 ’qqj’ NetCDF qqj variable name.
qj dim name C*32 ’qj dim’ NetCDF qj dimension name.
qqj dim name C*32 ’qqj dim’ NetCDF qqj dimension name.
Surface albedo:
sfalbedo opt I 0 Surface albedo option:

0: no sfalbedo
1: set each type of sfalbedo to an intial value
2: read in monthly sfalbedo values from a netCDF file
3: read in values of four types of surface albedo from the met data

saldif init val R 0.1 Surface albedo for diffuse light (near IR);
when sfalbedo opt = 1, this value will be used
to initialize all saldif values.

saldir init val R 0.1 Surface albedo for direct light (near IR); when sfalbedo opt = 1,
this value will be used to initialize all saldir values.

sasdif init val R 0.1 Surface albedo for diffuse light (uv/vis); when sfalbedo opt = 1,
this value will be used to initialize all sasdif values.

sasdir init val R 0.1 Surface albedo for direct light (uv/vis); when sfalbedo opt = 1,
this value will be used to initialize all sasdir values.

sfalbedo infile name C*128 ’ ’ Surface albedo input file name.
Solar Cycle:
do solar cycle L F Should solar cycle for incoming radiation be turned on?

(currently works with lookup table only)
sc infile name C*128 ’ ’ file for solar cycle coefficients
UV albedo:
uvalbedo opt I 0 UV albedo option:

0: no uvalbedo
1: set all uvalbedo values to uvalbedo init val
2: read in monthly uvalbedo values from an ASCII file

G
M

I
U

se
r’s

G
u
id

e
8
7

C
h
a
p
te

r
F

.
In

p
u
t

N
a
m

e
list

V
a
ria

b
le

s

3: read in bulk surface albedo values from the met data
uvalbedo init val R 0.1 When uvalbedo opt = 1, this value will be used

to initialize all uvalbedo values.
uvalbedo infile name C*128 ’ ’ Uvalbedo input file name.

nlGmiTracer SECTION

tracer opt I 0 Tracer run option:
0: no tracer
1: tracer run

efold time R 0.0 e-folding time of the tracer (in days)
tr source land R 0.0 land source for the tracer
tr source ocean R 0.0 ocean source for the tracer

nlGmiLightning SECTION

lightning opt I 0 Lighning option:
0: lightning NO emissions read from file
1: parameterized lightning
2: no lightning

i no lgt I 0 Index to the location of NO lgt in the emiss infile
desired g N prod rate R 5.0 global nitrogen production rate (in Tg.)

Table F.1: Namelist variables

8
8

G
M

I
U

se
r’s

G
u
id

e

